Vibration bandgap of immersed periodic plates with fluid surface sloshing effect

IF 4.9 2区 工程技术 Q1 ACOUSTICS
N. Shen , R.Z. Zhang , Z.X. Xia , Y. Cong , S.T. Gu , Z.-Q. Feng
{"title":"Vibration bandgap of immersed periodic plates with fluid surface sloshing effect","authors":"N. Shen ,&nbsp;R.Z. Zhang ,&nbsp;Z.X. Xia ,&nbsp;Y. Cong ,&nbsp;S.T. Gu ,&nbsp;Z.-Q. Feng","doi":"10.1016/j.jsv.2025.119499","DOIUrl":null,"url":null,"abstract":"<div><div>This study extends our previous work by implementing a unit cell-based symmetric fluid–structure formulation to predict vibration bandgaps in immersed periodic composite plates, with the account for fluid surface sloshing effects. The novelty lies in integrating Bloch periodic boundary conditions into a symmetric hydro-elastic <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>φ</mi><mo>)</mo></mrow></math></span> unit cell model with fluid–structure interaction (FSI). The unit cell comprises three subdomains: the immersed composite plate, the fluid, and the fluid free surface. Bloch periodic conditions are applied across all subdomains, enabling bandgap predictions that incorporate the combined effects of fluid inertia and surface sloshing. Hence, the approach accounts for full-range immersion depths ranging from deep submersion to near-surface scenarios. The numerical cases investigate an immersed periodic plate with square inclusions, revealing a competition between fluid inertia and surface sloshing in influencing the structure’s vibration dynamics. Specifically, fluid inertia dominates in deeply immersed conditions, whereas surface sloshing prevails in shallow immersion. The observation is validated by comparing with frequency response analysis performed under equivalent FSI conditions. Additionally, the method is applied to explore dispersive bandgaps in microstructures with anisotropic wave propagation. The results underline the effectiveness of the proposed model in designing immersed meta-structures for vibration mitigation.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"622 ","pages":"Article 119499"},"PeriodicalIF":4.9000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25005723","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study extends our previous work by implementing a unit cell-based symmetric fluid–structure formulation to predict vibration bandgaps in immersed periodic composite plates, with the account for fluid surface sloshing effects. The novelty lies in integrating Bloch periodic boundary conditions into a symmetric hydro-elastic (u,η,φ) unit cell model with fluid–structure interaction (FSI). The unit cell comprises three subdomains: the immersed composite plate, the fluid, and the fluid free surface. Bloch periodic conditions are applied across all subdomains, enabling bandgap predictions that incorporate the combined effects of fluid inertia and surface sloshing. Hence, the approach accounts for full-range immersion depths ranging from deep submersion to near-surface scenarios. The numerical cases investigate an immersed periodic plate with square inclusions, revealing a competition between fluid inertia and surface sloshing in influencing the structure’s vibration dynamics. Specifically, fluid inertia dominates in deeply immersed conditions, whereas surface sloshing prevails in shallow immersion. The observation is validated by comparing with frequency response analysis performed under equivalent FSI conditions. Additionally, the method is applied to explore dispersive bandgaps in microstructures with anisotropic wave propagation. The results underline the effectiveness of the proposed model in designing immersed meta-structures for vibration mitigation.
流体表面晃动作用下浸入式周期板的振动带隙
本研究扩展了我们之前的工作,通过实现基于单元格的对称流体结构公式来预测浸入周期复合材料板的振动带隙,并考虑流体表面晃动效应。新颖之处在于将Bloch周期边界条件集成到具有流固耦合(FSI)的对称水弹性(u,η,φ)单元胞模型中。所述单元格包括三个子域:浸入式复合板、流体和流体自由表面。布洛赫周期条件应用于所有子域,使带隙预测结合流体惯性和表面晃动的综合影响。因此,该方法考虑了从深浸到近地表场景的全范围浸没深度。数值研究了含方形夹杂物的浸没周期板,揭示了流体惯性和表面晃动对结构振动动力学的影响。具体来说,流体惯性在深浸条件下占主导地位,而表面晃动在浅浸条件下占主导地位。通过与等效FSI条件下的频率响应分析进行比较,验证了该观察结果。此外,该方法还应用于探索具有各向异性波传播的微结构中的色散带隙。研究结果强调了该模型在设计浸没式元结构减振方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信