{"title":"An acoustic sensing system for noise monitoring and source identification using transfer learning","authors":"Dolvara Gunatilaka, Wudhichart Sawangphol, Thanakorn Charoenritthitham, Thanawat Kanjanapoo, Teerapat Burasotikul, Kittikawin Pongprasit","doi":"10.1016/j.eswa.2025.130014","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing noise pollution in urban areas underscores the need for an autonomous system to monitor and control noise. Beyond detecting noise levels, identifying noise sources further improves noise management. This work presents a scalable IoT-based sensing platform for smart environment applications. The system integrates low-cost devices for acoustic measurement, edge devices to enable noise source identification, a back-end infrastructure crucial for efficient acoustic data and device management, and a web-based application facilitating noise data visualization. Our study explores three feature extraction techniques and eight Convolutional Neural Network (CNN)-based pre-trained models for noise classification on the resource-constrained Raspberry Pi platform and compares their performance. Leveraging pre-trained models helps speed up the model development process. UrbanSound8k, ESC-50 datasets, and audio data collected with our low-cost microphone are used for model development and validation. The evaluation results show that our hierarchical model, utilizing the Mel Spectrogram feature extraction method and a MobileNet model, achieves the highest accuracy of 90.18 %. Furthermore, we deploy the system and assess its performance. Our system can reliably transmit audio data with an average delay of 0.37 s, and the Raspberry Pi can perform feature extraction and classification within an average of 2.5 s. Hence, our solution offers a comprehensive and cost-effective solution to enhance noise management and control.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"299 ","pages":"Article 130014"},"PeriodicalIF":7.5000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425036309","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing noise pollution in urban areas underscores the need for an autonomous system to monitor and control noise. Beyond detecting noise levels, identifying noise sources further improves noise management. This work presents a scalable IoT-based sensing platform for smart environment applications. The system integrates low-cost devices for acoustic measurement, edge devices to enable noise source identification, a back-end infrastructure crucial for efficient acoustic data and device management, and a web-based application facilitating noise data visualization. Our study explores three feature extraction techniques and eight Convolutional Neural Network (CNN)-based pre-trained models for noise classification on the resource-constrained Raspberry Pi platform and compares their performance. Leveraging pre-trained models helps speed up the model development process. UrbanSound8k, ESC-50 datasets, and audio data collected with our low-cost microphone are used for model development and validation. The evaluation results show that our hierarchical model, utilizing the Mel Spectrogram feature extraction method and a MobileNet model, achieves the highest accuracy of 90.18 %. Furthermore, we deploy the system and assess its performance. Our system can reliably transmit audio data with an average delay of 0.37 s, and the Raspberry Pi can perform feature extraction and classification within an average of 2.5 s. Hence, our solution offers a comprehensive and cost-effective solution to enhance noise management and control.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.