Towards enhancing prototypes driven by graph convolutional network for domain adaptation

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ba Hung Ngo , Tae Jong Choi , Sung In Cho
{"title":"Towards enhancing prototypes driven by graph convolutional network for domain adaptation","authors":"Ba Hung Ngo ,&nbsp;Tae Jong Choi ,&nbsp;Sung In Cho","doi":"10.1016/j.eswa.2025.130010","DOIUrl":null,"url":null,"abstract":"<div><div>Domain adaptation (DA) is essential for transferring knowledge across domains with differing distributions, yet challenges like domain shifts and scarce labeled data limit performance. Prototype-based methods show promise on the DA task. This work introduces a prototype-based method, termed enhanced prototypical network (EnPro), for unsupervised domain adaptation (UDA) and semi-supervised domain adaptation (SSDA) settings with consistent architecture and training. We provide a theoretical analysis dividing the DA mapping space into <em>consensus, vicinal</em>, and <em>vulnerable</em> spaces. This improves classification by expanding the <em>consensus</em> and <em>vicinal</em> spaces while reducing the <em>vulnerable</em> space. To achieve this, we use a graph convolutional network (GCN) to increase <em>labeled</em> target samples through reliable pseudo-labels and enhanced prototypes. Experiments on UDA and SSDA benchmark datasets demonstrate state-of-the-art performance.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"299 ","pages":"Article 130010"},"PeriodicalIF":7.5000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425036267","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Domain adaptation (DA) is essential for transferring knowledge across domains with differing distributions, yet challenges like domain shifts and scarce labeled data limit performance. Prototype-based methods show promise on the DA task. This work introduces a prototype-based method, termed enhanced prototypical network (EnPro), for unsupervised domain adaptation (UDA) and semi-supervised domain adaptation (SSDA) settings with consistent architecture and training. We provide a theoretical analysis dividing the DA mapping space into consensus, vicinal, and vulnerable spaces. This improves classification by expanding the consensus and vicinal spaces while reducing the vulnerable space. To achieve this, we use a graph convolutional network (GCN) to increase labeled target samples through reliable pseudo-labels and enhanced prototypes. Experiments on UDA and SSDA benchmark datasets demonstrate state-of-the-art performance.
改进基于图卷积网络的领域自适应原型
领域自适应(DA)对于跨不同分布的领域转移知识至关重要,但领域转移和标记数据稀缺等挑战限制了性能。基于原型的方法在数据处理任务上显示出前景。这项工作引入了一种基于原型的方法,称为增强原型网络(EnPro),用于具有一致架构和训练的无监督域适应(UDA)和半监督域适应(SSDA)设置。将数据挖掘映射空间划分为共识空间、邻近空间和脆弱空间。这通过扩大共识和邻近空间来改进分类,同时减少了脆弱空间。为了实现这一点,我们使用图卷积网络(GCN)通过可靠的伪标签和增强原型来增加标记的目标样本。在UDA和SSDA基准数据集上的实验证明了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信