YOLO-DLA: A YOLO-based unified framework for multi-scale document layout analysis

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Haoyan Qi, Xinyang Meng, Zhijuan Du
{"title":"YOLO-DLA: A YOLO-based unified framework for multi-scale document layout analysis","authors":"Haoyan Qi,&nbsp;Xinyang Meng,&nbsp;Zhijuan Du","doi":"10.1016/j.eswa.2025.129981","DOIUrl":null,"url":null,"abstract":"<div><div>Document layout analysis (DLA) serves as a cornerstone of modern information systems, enabling efficient data extraction and structured knowledge organization. However, processing multi-scale layout documents has remained a bottleneck in the development of universal DLA frameworks. To address this limitation, we introduce the first multi-scale DLA dataset and propose a novel YOLO-based detection framework. Specifically: (1) To address the lack of fine-grained layout annotations in existing datasets, we construct <strong>AcadLayout</strong>, a specialized dataset for scientific documents with 13 layout element types (e.g., multi-level headings, formula, figure caption). (2) To address the challenges of multi-scale feature extraction, particularly for micro-scale elements, we innovatively incorporate the KWConv dynamic convolution method. (3) To achieve robust feature fusion across scales, we propose the PRDM-neck module, which uniquely integrates axial attention with multi-scale context aggregation. (4) To address scale imbalance in scientific documents, we propose a scale-aware curriculum learning strategy that progressively trains models from macro- to micro-scale elements (macro<span><math><mo>→</mo></math></span>medium<span><math><mo>→</mo></math></span>micro), effectively balancing detection performance across all scales.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"299 ","pages":"Article 129981"},"PeriodicalIF":7.5000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425035961","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Document layout analysis (DLA) serves as a cornerstone of modern information systems, enabling efficient data extraction and structured knowledge organization. However, processing multi-scale layout documents has remained a bottleneck in the development of universal DLA frameworks. To address this limitation, we introduce the first multi-scale DLA dataset and propose a novel YOLO-based detection framework. Specifically: (1) To address the lack of fine-grained layout annotations in existing datasets, we construct AcadLayout, a specialized dataset for scientific documents with 13 layout element types (e.g., multi-level headings, formula, figure caption). (2) To address the challenges of multi-scale feature extraction, particularly for micro-scale elements, we innovatively incorporate the KWConv dynamic convolution method. (3) To achieve robust feature fusion across scales, we propose the PRDM-neck module, which uniquely integrates axial attention with multi-scale context aggregation. (4) To address scale imbalance in scientific documents, we propose a scale-aware curriculum learning strategy that progressively trains models from macro- to micro-scale elements (macromediummicro), effectively balancing detection performance across all scales.
基于YOLO-DLA的多尺度文档布局分析统一框架
文档布局分析(Document layout analysis, DLA)是现代信息系统的基石,能够实现高效的数据提取和结构化的知识组织。然而,多尺度布局文件的处理一直是通用DLA框架发展的瓶颈。为了解决这一限制,我们引入了第一个多尺度DLA数据集,并提出了一个新的基于yolo的检测框架。具体而言:(1)为了解决现有数据集中缺乏细粒度布局注释的问题,我们构建了AcadLayout,这是一个专门用于科学文档的数据集,具有13种布局元素类型(例如,多级标题、公式、图标题)。(2)为了解决多尺度特征提取的难题,特别是针对微尺度元素,我们创新地引入了KWConv动态卷积方法。(3)为了实现跨尺度的鲁棒特征融合,我们提出了prdm颈模块,该模块独特地将轴向关注与多尺度上下文聚合相结合。(4)为了解决科学文献中的尺度不平衡问题,我们提出了一种尺度感知课程学习策略,该策略从宏观到微观(宏观→中等→微观)逐步训练模型,有效地平衡了所有尺度的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信