Forecasting tuberculosis through mechanistic learning of transmission dynamics: Insights from a case study in India.

IF 6.3 2区 医学 Q1 BIOLOGY
Adrita Ghosh, Parthasakha Das, Susanta Kumar Das, Pritha Das, Ranjit Kumar Upadhyay
{"title":"Forecasting tuberculosis through mechanistic learning of transmission dynamics: Insights from a case study in India.","authors":"Adrita Ghosh, Parthasakha Das, Susanta Kumar Das, Pritha Das, Ranjit Kumar Upadhyay","doi":"10.1016/j.compbiomed.2025.111225","DOIUrl":null,"url":null,"abstract":"<p><p>Tuberculosis continues to pose a significant global health issue, with India facing the most considerable burden. We develop and calibrate an SEIR-type model to understand disease dynamics and perform sensitivity analysis to pinpoint crucial parameters. The basic reproduction number acts as the epidemic threshold, while backward bifurcation highlights the dangers of reinfection and superinfection. To enhance forecasting, we merge mechanistic modeling with deep learning techniques, utilizing feedforward, recurrent, and memory-based networks. Evaluated on TB case data from India, these hybrid models outperform the SEIR baseline, with the gated recurrent unit best capturing residual trends and the feedforward network demonstrating robust generalization. This integrated framework enhances predictive accuracy and interpretability, providing a valuable tool for TB forecasting and aiding in targeted interventions.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"198 Pt B","pages":"111225"},"PeriodicalIF":6.3000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2025.111225","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tuberculosis continues to pose a significant global health issue, with India facing the most considerable burden. We develop and calibrate an SEIR-type model to understand disease dynamics and perform sensitivity analysis to pinpoint crucial parameters. The basic reproduction number acts as the epidemic threshold, while backward bifurcation highlights the dangers of reinfection and superinfection. To enhance forecasting, we merge mechanistic modeling with deep learning techniques, utilizing feedforward, recurrent, and memory-based networks. Evaluated on TB case data from India, these hybrid models outperform the SEIR baseline, with the gated recurrent unit best capturing residual trends and the feedforward network demonstrating robust generalization. This integrated framework enhances predictive accuracy and interpretability, providing a valuable tool for TB forecasting and aiding in targeted interventions.

通过传播动力学的机械学习来预测结核病:来自印度案例研究的见解。
结核病继续构成一个重大的全球健康问题,印度面临的负担最为沉重。我们开发并校准了seir型模型,以了解疾病动态,并进行敏感性分析以确定关键参数。基本繁殖数作为流行阈值,后向分岔强调再感染和重复感染的危险。为了加强预测,我们将机制建模与深度学习技术结合起来,利用前馈、循环和基于记忆的网络。对来自印度的结核病病例数据进行评估后,这些混合模型优于SEIR基线,门控循环单元最能捕获残差趋势,前馈网络显示出强大的泛化能力。这一综合框架提高了预测的准确性和可解释性,为结核病预测提供了宝贵的工具,并有助于开展有针对性的干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信