A magnetically recyclable core-shell heterojunction photocatalyst with oxygen vacancies for efficient upcycling of plastic waste.

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Wenxuan He, Zhifeng Ao, Wen Shao, Ting Liu, Shan Jiang, Shaofeng Xiong, Jiale Zhao, Yao Chen, Zhigang Shen
{"title":"A magnetically recyclable core-shell heterojunction photocatalyst with oxygen vacancies for efficient upcycling of plastic waste.","authors":"Wenxuan He, Zhifeng Ao, Wen Shao, Ting Liu, Shan Jiang, Shaofeng Xiong, Jiale Zhao, Yao Chen, Zhigang Shen","doi":"10.1016/j.jcis.2025.139290","DOIUrl":null,"url":null,"abstract":"<p><p>Photocatalytic depolymerization of plastic waste into high-value-added chemicals is a sustainable and promising strategy driven by solar energy under ambient conditions. Herein, we report a magnetically separable Fe<sub>3</sub>O<sub>4</sub>@CeO<sub>2</sub>, heterojunction photocatalyst, in which the interfacial heterojunction between the Fe<sub>3</sub>O<sub>4</sub> core and CeO<sub>2</sub> shell enhances charge separation, while surface oxygen vacancies further promote electron migration. This synergistic design enables complete depolymerization of real-world polyethylene terephthalate (PET) (100 % conversion), achieving >85 % terephthalic acid (TPA) yield, with plastic bottles reaching exceptional yields up to 95 %. The system maintains excellent recyclability, retaining >90 % of its initial activity after four consecutive cycles. Molecular simulations indicate that the photogenerated chlorine radical first mediates CH abstraction from the PET backbone to produce an alkyl radical. This radical then reacts with oxygen to generate a peroxy radical, which finally cleaves the low-energy ester CO bond, leading to depolymerization and the formation of terephthalic acid. The Ce<sup>4+</sup>/Ce<sup>3+</sup> redox cycle further enhances radical generation, facilitating the catalytic process. The photocatalyst demonstrates remarkable versatility, exhibiting efficient depolymerization activity toward polypropylene, polystyrene, and polyethylene. Life cycle assessment confirms its environmental and economic advantages. This work provides fundamental insights into interfacial engineering of heterojunction photocatalysts for efficient plastic upcycling.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"703 Pt 2","pages":"139290"},"PeriodicalIF":9.7000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.139290","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic depolymerization of plastic waste into high-value-added chemicals is a sustainable and promising strategy driven by solar energy under ambient conditions. Herein, we report a magnetically separable Fe3O4@CeO2, heterojunction photocatalyst, in which the interfacial heterojunction between the Fe3O4 core and CeO2 shell enhances charge separation, while surface oxygen vacancies further promote electron migration. This synergistic design enables complete depolymerization of real-world polyethylene terephthalate (PET) (100 % conversion), achieving >85 % terephthalic acid (TPA) yield, with plastic bottles reaching exceptional yields up to 95 %. The system maintains excellent recyclability, retaining >90 % of its initial activity after four consecutive cycles. Molecular simulations indicate that the photogenerated chlorine radical first mediates CH abstraction from the PET backbone to produce an alkyl radical. This radical then reacts with oxygen to generate a peroxy radical, which finally cleaves the low-energy ester CO bond, leading to depolymerization and the formation of terephthalic acid. The Ce4+/Ce3+ redox cycle further enhances radical generation, facilitating the catalytic process. The photocatalyst demonstrates remarkable versatility, exhibiting efficient depolymerization activity toward polypropylene, polystyrene, and polyethylene. Life cycle assessment confirms its environmental and economic advantages. This work provides fundamental insights into interfacial engineering of heterojunction photocatalysts for efficient plastic upcycling.

一种具有氧空位的磁可回收核壳异质结光催化剂,用于塑料垃圾的高效升级回收。
在环境条件下,利用太阳能光催化分解塑料废弃物制备高附加值化学品是一种可持续的、有前景的策略。本文报道了一种磁可分离Fe3O4@CeO2异质结光催化剂,其中Fe3O4核心和CeO2壳层之间的界面异质结促进了电荷分离,而表面氧空位进一步促进了电子迁移。这种协同设计使真实世界的聚对苯二甲酸乙二醇酯(PET)完全解聚(100%转化率),达到85 %的对苯二甲酸(TPA)收率,塑料瓶的收率达到95%。该系统保持了优异的可回收性,在连续四个循环后仍保持了90%的初始活性。分子模拟表明,光生成的氯自由基首先介导从PET主链中提取CH生成烷基自由基。然后,该自由基与氧反应生成过氧自由基,最终裂解低能酯CO键,导致解聚并形成对苯二甲酸。Ce4+/Ce3+氧化还原循环进一步促进了自由基的生成,促进了催化过程。该光催化剂具有显著的通用性,对聚丙烯、聚苯乙烯和聚乙烯具有高效的解聚活性。生命周期评价证实了其环境和经济优势。这项工作为高效塑料升级回收的异质结光催化剂的界面工程提供了基本的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信