Gauss-Bonnet entropy and thermal dynamics of RN-AdS black holes

IF 2.8 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
M. Z. Bhatti, Kazuharu Bamba, I. Siddique, Bander Almutairi, Z. Yousaf
{"title":"Gauss-Bonnet entropy and thermal dynamics of RN-AdS black holes","authors":"M. Z. Bhatti,&nbsp;Kazuharu Bamba,&nbsp;I. Siddique,&nbsp;Bander Almutairi,&nbsp;Z. Yousaf","doi":"10.1007/s10714-025-03487-x","DOIUrl":null,"url":null,"abstract":"<div><p>We explore the thermodynamics of a novel solution for the Reissner-Nordström-Anti-de Sitter (AdS) black hole, uniquely incorporating the Gauss-Bonnet term. Unlike previous studies that primarily focused on standard General Relativity or other modifications, this inclusion allows for a modified entropy formulation, facilitating the computation of key thermodynamic quantities such as Gibbs free energy, the first law of thermodynamics, the equation of state, and Hawking temperature. We identify critical points and graphically represent the relationship between temperature and Gibbs free energy as a function of the horizon radius. Ultimately, we assess the thermal stability of the Reissner-Nordström-AdS black hole within the framework of Gauss-Bonnet gravity, emphasizing the influence of the Gauss-Bonnet term unlike previous studies that primarily focused on standard General Relativity or other modifications. As a result, it is found that the Gauss-Bonnet coupling significantly alters the thermodynamic behavior and stability structure of the black hole, revealing richer phase transition phenomena.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 10","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-025-03487-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03487-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the thermodynamics of a novel solution for the Reissner-Nordström-Anti-de Sitter (AdS) black hole, uniquely incorporating the Gauss-Bonnet term. Unlike previous studies that primarily focused on standard General Relativity or other modifications, this inclusion allows for a modified entropy formulation, facilitating the computation of key thermodynamic quantities such as Gibbs free energy, the first law of thermodynamics, the equation of state, and Hawking temperature. We identify critical points and graphically represent the relationship between temperature and Gibbs free energy as a function of the horizon radius. Ultimately, we assess the thermal stability of the Reissner-Nordström-AdS black hole within the framework of Gauss-Bonnet gravity, emphasizing the influence of the Gauss-Bonnet term unlike previous studies that primarily focused on standard General Relativity or other modifications. As a result, it is found that the Gauss-Bonnet coupling significantly alters the thermodynamic behavior and stability structure of the black hole, revealing richer phase transition phenomena.

RN-AdS黑洞的高斯-博内熵和热力学
我们探索了Reissner-Nordström-Anti-de Sitter (AdS)黑洞的新解的热力学,独特地结合了高斯-博内项。与之前主要关注标准广义相对论或其他修正的研究不同,这一纳入允许修改熵公式,促进关键热力学量的计算,如吉布斯自由能、热力学第一定律、状态方程和霍金温度。我们确定了临界点,并用图形表示温度和吉布斯自由能作为视界半径的函数之间的关系。最后,我们在高斯-邦纳引力的框架内评估Reissner-Nordström-AdS黑洞的热稳定性,强调高斯-邦纳项的影响,不像以前的研究主要集中在标准广义相对论或其他修正上。结果发现,高斯-邦纳耦合显著地改变了黑洞的热力学行为和稳定结构,揭示了更丰富的相变现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信