Chaoyue Yin;Mingzhe Li;Jin Zhang;You Lin;Qingsong Wei;Siow Mong Rick Goh
{"title":"Atomic Smart Contract Interoperability With High Efficiency via Cross-Chain Integrated Execution","authors":"Chaoyue Yin;Mingzhe Li;Jin Zhang;You Lin;Qingsong Wei;Siow Mong Rick Goh","doi":"10.1109/TPDS.2025.3614374","DOIUrl":null,"url":null,"abstract":"With the development of Ethereum, numerous blockchains compatible with Ethereum’s execution environment (i.e., Ethereum Virtual Machine, EVM) have emerged. Developers can leverage smart contracts to run various complex decentralized applications on top of blockchains. However, the increasing number of EVM-compatible blockchains has introduced significant challenges in cross-chain interoperability, particularly in ensuring efficiency and atomicity for the whole cross-chain application. Existing solutions are <italic>either limited in guaranteeing overall atomicity for the cross-chain application, or inefficient due to the need for multiple rounds of cross-chain smart contract execution.</i> To address this gap, we propose <monospace>IntegrateX</monospace>, an efficient cross-chain interoperability system that ensures the overall atomicity of cross-chain smart contract invocations. The core idea is to <italic>deploy the logic required for cross-chain execution onto a single blockchain, where it can be executed in an integrated manner.</i> This allows cross-chain applications to perform all cross-chain logic efficiently within the same blockchain. <monospace>IntegrateX</monospace> consists of a <italic>cross-chain smart contract deployment protocol</i> and a <italic>cross-chain smart contract integrated execution protocol.</i> The former achieves efficient and secure cross-chain deployment by decoupling smart contract logic from state, and employing an off-chain cross-chain deployment mechanism combined with on-chain cross-chain verification. The latter ensures atomicity of cross-chain invocations through a 2PC-based mechanism, and enhances performance through transaction aggregation and fine-grained state lock. We implement a prototype of <monospace>IntegrateX</monospace>. Extensive experiments demonstrate that it reduces up to 61.2% latency compared to the state-of-the-art baseline while maintaining low gas consumption.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 12","pages":"2635-2651"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11180137/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of Ethereum, numerous blockchains compatible with Ethereum’s execution environment (i.e., Ethereum Virtual Machine, EVM) have emerged. Developers can leverage smart contracts to run various complex decentralized applications on top of blockchains. However, the increasing number of EVM-compatible blockchains has introduced significant challenges in cross-chain interoperability, particularly in ensuring efficiency and atomicity for the whole cross-chain application. Existing solutions are either limited in guaranteeing overall atomicity for the cross-chain application, or inefficient due to the need for multiple rounds of cross-chain smart contract execution. To address this gap, we propose IntegrateX, an efficient cross-chain interoperability system that ensures the overall atomicity of cross-chain smart contract invocations. The core idea is to deploy the logic required for cross-chain execution onto a single blockchain, where it can be executed in an integrated manner. This allows cross-chain applications to perform all cross-chain logic efficiently within the same blockchain. IntegrateX consists of a cross-chain smart contract deployment protocol and a cross-chain smart contract integrated execution protocol. The former achieves efficient and secure cross-chain deployment by decoupling smart contract logic from state, and employing an off-chain cross-chain deployment mechanism combined with on-chain cross-chain verification. The latter ensures atomicity of cross-chain invocations through a 2PC-based mechanism, and enhances performance through transaction aggregation and fine-grained state lock. We implement a prototype of IntegrateX. Extensive experiments demonstrate that it reduces up to 61.2% latency compared to the state-of-the-art baseline while maintaining low gas consumption.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.