Transferable neural wavefunctions for solids.

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
L Gerard, M Scherbela, H Sutterud, W M C Foulkes, P Grohs
{"title":"Transferable neural wavefunctions for solids.","authors":"L Gerard, M Scherbela, H Sutterud, W M C Foulkes, P Grohs","doi":"10.1038/s43588-025-00872-z","DOIUrl":null,"url":null,"abstract":"<p><p>Deep-learning-based variational Monte Carlo has emerged as a highly accurate method for solving the many-electron Schrödinger equation. Despite favorable scaling with the number of electrons, <math><mrow><mi>O</mi> <mrow><mo>(</mo> <mrow> <msup> <mrow> <msub><mrow><mi>n</mi></mrow> <mrow><mi>el</mi></mrow> </msub> </mrow> <mrow><mn>4</mn></mrow> </msup> </mrow> <mo>)</mo></mrow> </mrow> </math> , the practical value of deep-learning-based variational Monte Carlo is limited by the high cost of optimizing the neural network weights for every system studied. Recent research has proposed optimizing a single neural network across multiple systems, reducing the cost per system. Here we extend this approach to solids, which require numerous calculations across different geometries, boundary conditions and supercell sizes. We demonstrate that optimization of a single ansatz across these variations significantly reduces optimization steps. Furthermore, we successfully transfer a network trained on 2 × 2 × 2 supercells of LiH, to 3 × 3 × 3 supercells, reducing the number of optimization steps required to simulate the large system by a factor of 50 compared with previous work.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":18.3000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00872-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep-learning-based variational Monte Carlo has emerged as a highly accurate method for solving the many-electron Schrödinger equation. Despite favorable scaling with the number of electrons, O ( n el 4 ) , the practical value of deep-learning-based variational Monte Carlo is limited by the high cost of optimizing the neural network weights for every system studied. Recent research has proposed optimizing a single neural network across multiple systems, reducing the cost per system. Here we extend this approach to solids, which require numerous calculations across different geometries, boundary conditions and supercell sizes. We demonstrate that optimization of a single ansatz across these variations significantly reduces optimization steps. Furthermore, we successfully transfer a network trained on 2 × 2 × 2 supercells of LiH, to 3 × 3 × 3 supercells, reducing the number of optimization steps required to simulate the large system by a factor of 50 compared with previous work.

固体的可转移神经波函数。
基于深度学习的变分蒙特卡罗已经成为求解多电子Schrödinger方程的高精度方法。尽管随着电子数量的增加,深度学习的变分蒙特卡罗算法具有良好的可扩展性,但它的实用价值受到了为所研究的每个系统优化神经网络权值的高成本的限制。最近的研究提出了跨多个系统优化单个神经网络,以降低每个系统的成本。在这里,我们将这种方法扩展到固体,这需要在不同的几何形状、边界条件和超级单体大小之间进行大量计算。我们证明,在这些变化中对单个ansatz进行优化可以显著减少优化步骤。此外,我们成功地将在LiH的2 × 2 × 2超级细胞上训练的网络转移到3 × 3 × 3超级细胞上,与以前的工作相比,将模拟大型系统所需的优化步骤减少了50倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信