Construction and equivalence for generalized boolean functions.

IF 1.1 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Ayça Çeşmelioğlu, Wilfried Meidl
{"title":"Construction and equivalence for generalized boolean functions.","authors":"Ayça Çeşmelioğlu, Wilfried Meidl","doi":"10.1007/s12095-025-00805-7","DOIUrl":null,"url":null,"abstract":"<p><p>Recently in Çeşmelioğlu, Meidl (<i>Adv. Math. Commun.,</i> <i>18</i>, 2024), the study of EA-equivalence and CCZ-equivalence for functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>)</mo></mrow> </msubsup> </math> to the cyclic group <math><msub><mi>Z</mi> <msup><mi>p</mi> <mi>k</mi></msup> </msub> </math> has been initiated, where <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>)</mo></mrow> </msubsup> </math> denotes an <i>n</i>-dimensional vector space over <math><msub><mi>F</mi> <mi>p</mi></msub> </math> . Amongst others it has been shown that there exist functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mn>2</mn> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <mn>4</mn></msub> </math> which are CCZ-equivalent but not EA-equivalent. We extend these results to larger classes of functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <msup><mi>p</mi> <mi>k</mi></msup> </msub> </math> . We then discuss constructions of generalized bent functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <msup><mi>p</mi> <mi>k</mi></msup> </msub> </math> , <i>p</i> odd or <math><mrow><mi>p</mi> <mo>=</mo> <mn>2</mn></mrow> </math> and <i>n</i> is even, which correspond to large affine spaces of bent functions. In particular we employ versions of the direct sum, the semi-direct sum and of a recent secondary bent function construction in Wang et. al., (<i>IEEE Trans. Inform. Theory</i> <i>69</i>, 2023), to generate large affine spaces of bent functions. Finally we present a solution for constructing generalized bent functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mn>2</mn> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <msup><mn>2</mn> <mi>k</mi></msup> </msub> </math> , <i>n</i> odd, from arbitrary generalized bent functions from <math><msubsup><mi>V</mi> <mrow><mi>n</mi> <mo>-</mo> <mn>1</mn></mrow> <mrow><mo>(</mo> <mn>2</mn> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <msup><mn>2</mn> <mrow><mi>k</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> </msub> </math> .</p>","PeriodicalId":48936,"journal":{"name":"Cryptography and Communications-Discrete-Structures Boolean Functions and Sequences","volume":"17 6","pages":"1659-1682"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12537615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications-Discrete-Structures Boolean Functions and Sequences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12095-025-00805-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently in Çeşmelioğlu, Meidl (Adv. Math. Commun., 18, 2024), the study of EA-equivalence and CCZ-equivalence for functions from V n ( p ) to the cyclic group Z p k has been initiated, where V n ( p ) denotes an n-dimensional vector space over F p . Amongst others it has been shown that there exist functions from V n ( 2 ) to Z 4 which are CCZ-equivalent but not EA-equivalent. We extend these results to larger classes of functions from V n ( p ) to Z p k . We then discuss constructions of generalized bent functions from V n ( p ) to Z p k , p odd or p = 2 and n is even, which correspond to large affine spaces of bent functions. In particular we employ versions of the direct sum, the semi-direct sum and of a recent secondary bent function construction in Wang et. al., (IEEE Trans. Inform. Theory 69, 2023), to generate large affine spaces of bent functions. Finally we present a solution for constructing generalized bent functions from V n ( 2 ) to Z 2 k , n odd, from arbitrary generalized bent functions from V n - 1 ( 2 ) to Z 2 k - 1 .

广义布尔函数的构造与等价。
最近在Çeşmelioğlu, Meidl (Adv. Math)。Commun。, 18, 2024),开始了从V n (p)到循环群Z p k的函数ea -等价和ccz -等价的研究,其中V n (p)表示F p上的n维向量空间。其中,已经证明存在从vn(2)到z4的函数是ccz等效的,但不是ea等效的。我们将这些结果推广到更大的函数类,从vn (p)到zkp。然后讨论了从V n (p)到Z p k, p奇数或p = 2和n为偶的广义弯曲函数的构造,它们对应于弯曲函数的大仿射空间。特别地,我们采用了直接和、半直接和和的版本,以及最近在Wang等人(IEEE Trans.)中的二次弯曲函数构造的版本。通知。理论69,2023),以产生弯曲函数的大仿射空间。最后给出了从vn - 1(2)到z2k - 1的任意广义弯曲函数构造从vn(2)到z2k - 1的广义弯曲函数的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cryptography and Communications-Discrete-Structures Boolean Functions and Sequences
Cryptography and Communications-Discrete-Structures Boolean Functions and Sequences COMPUTER SCIENCE, THEORY & METHODS-MATHEMATICS, APPLIED
CiteScore
2.50
自引率
7.10%
发文量
66
期刊介绍: The scope of the journal focuses on discrete structures used in stream and block ciphers in symmetric cryptography; code division multiple access in communications; and random number generation for statistics, cryptography and numerical methods. In particular, papers covering Boolean functions and sequences, without excluding any other discrete structure used in cryptography and communications, such as finite fields and other algebraic structures, are strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信