{"title":"Construction and equivalence for generalized boolean functions.","authors":"Ayça Çeşmelioğlu, Wilfried Meidl","doi":"10.1007/s12095-025-00805-7","DOIUrl":null,"url":null,"abstract":"<p><p>Recently in Çeşmelioğlu, Meidl (<i>Adv. Math. Commun.,</i> <i>18</i>, 2024), the study of EA-equivalence and CCZ-equivalence for functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>)</mo></mrow> </msubsup> </math> to the cyclic group <math><msub><mi>Z</mi> <msup><mi>p</mi> <mi>k</mi></msup> </msub> </math> has been initiated, where <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>)</mo></mrow> </msubsup> </math> denotes an <i>n</i>-dimensional vector space over <math><msub><mi>F</mi> <mi>p</mi></msub> </math> . Amongst others it has been shown that there exist functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mn>2</mn> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <mn>4</mn></msub> </math> which are CCZ-equivalent but not EA-equivalent. We extend these results to larger classes of functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <msup><mi>p</mi> <mi>k</mi></msup> </msub> </math> . We then discuss constructions of generalized bent functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <msup><mi>p</mi> <mi>k</mi></msup> </msub> </math> , <i>p</i> odd or <math><mrow><mi>p</mi> <mo>=</mo> <mn>2</mn></mrow> </math> and <i>n</i> is even, which correspond to large affine spaces of bent functions. In particular we employ versions of the direct sum, the semi-direct sum and of a recent secondary bent function construction in Wang et. al., (<i>IEEE Trans. Inform. Theory</i> <i>69</i>, 2023), to generate large affine spaces of bent functions. Finally we present a solution for constructing generalized bent functions from <math><msubsup><mi>V</mi> <mi>n</mi> <mrow><mo>(</mo> <mn>2</mn> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <msup><mn>2</mn> <mi>k</mi></msup> </msub> </math> , <i>n</i> odd, from arbitrary generalized bent functions from <math><msubsup><mi>V</mi> <mrow><mi>n</mi> <mo>-</mo> <mn>1</mn></mrow> <mrow><mo>(</mo> <mn>2</mn> <mo>)</mo></mrow> </msubsup> </math> to <math><msub><mi>Z</mi> <msup><mn>2</mn> <mrow><mi>k</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> </msub> </math> .</p>","PeriodicalId":48936,"journal":{"name":"Cryptography and Communications-Discrete-Structures Boolean Functions and Sequences","volume":"17 6","pages":"1659-1682"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12537615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications-Discrete-Structures Boolean Functions and Sequences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12095-025-00805-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently in Çeşmelioğlu, Meidl (Adv. Math. Commun.,18, 2024), the study of EA-equivalence and CCZ-equivalence for functions from to the cyclic group has been initiated, where denotes an n-dimensional vector space over . Amongst others it has been shown that there exist functions from to which are CCZ-equivalent but not EA-equivalent. We extend these results to larger classes of functions from to . We then discuss constructions of generalized bent functions from to , p odd or and n is even, which correspond to large affine spaces of bent functions. In particular we employ versions of the direct sum, the semi-direct sum and of a recent secondary bent function construction in Wang et. al., (IEEE Trans. Inform. Theory69, 2023), to generate large affine spaces of bent functions. Finally we present a solution for constructing generalized bent functions from to , n odd, from arbitrary generalized bent functions from to .
期刊介绍:
The scope of the journal focuses on discrete structures used in stream and block ciphers in symmetric cryptography; code division multiple access in communications; and random number generation for statistics, cryptography and numerical methods. In particular, papers covering Boolean functions and sequences, without excluding any other discrete structure used in cryptography and communications, such as finite fields and other algebraic structures, are strongly encouraged.