Sander Van Hoorde, Nick Vereecke, Daniel Sperling, Xiaohua He, Emma Vanbeylen, Emma Van Denberghe, Eric Cox, Bert Devriendt
{"title":"External factors influence intrinsic differences in Stx2e production by Porcine Shiga Toxin-producing Escherichia coli strains.","authors":"Sander Van Hoorde, Nick Vereecke, Daniel Sperling, Xiaohua He, Emma Vanbeylen, Emma Van Denberghe, Eric Cox, Bert Devriendt","doi":"10.1371/journal.ppat.1013616","DOIUrl":null,"url":null,"abstract":"<p><p>Porcine Shiga toxin-producing Escherichia coli (STEC) strains pose significant challenges to the pig industry. The toxins produced by these strains, particularly Shiga toxin subtype 2e (Stx2e), are associated with a range of clinical symptoms such as diarrhoea and oedema disease, which in severe cases result in death. Understanding the factors that influence the production and secretion of Stx2e is crucial to elucidate porcine STEC pathogenesis and to develop effective therapeutic strategies. Therefore, this study aimed to characterize the variability in Stx2e production among different porcine STEC strains and assess the effect of several external factors, including bile acids and antibiotics. Our results highlighted a substantial variation in extracellular Stx2e levels by porcine STEC strains. In addition, bile acids, especially the bile acid deoxycholate, exerted strain-specific effects on these extracellular Stx2e levels. Antibiotics also affected extracellular Stx2e levels with ciprofloxacin and enrofloxacin inducing a substantial increase in toxin production in certain strains. Genome analysis revealed that these strains encode a holin gene downstream of the Stx2e operon. Deleting this holin gene abolished the antibiotic-induced increase in extracellular Stx2e levels, while introducing holin expression in unresponsive strains increased the presence of Stx2e in the extracellular environment. These findings unravel a role for phage holins in Stx2e secretion and highlight the intricate interplay between genetic and environmental factors in regulating Stx2e production in porcine STEC strains. Together, our results offer insights into STEC pathogenesis.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 10","pages":"e1013616"},"PeriodicalIF":4.9000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1013616","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Porcine Shiga toxin-producing Escherichia coli (STEC) strains pose significant challenges to the pig industry. The toxins produced by these strains, particularly Shiga toxin subtype 2e (Stx2e), are associated with a range of clinical symptoms such as diarrhoea and oedema disease, which in severe cases result in death. Understanding the factors that influence the production and secretion of Stx2e is crucial to elucidate porcine STEC pathogenesis and to develop effective therapeutic strategies. Therefore, this study aimed to characterize the variability in Stx2e production among different porcine STEC strains and assess the effect of several external factors, including bile acids and antibiotics. Our results highlighted a substantial variation in extracellular Stx2e levels by porcine STEC strains. In addition, bile acids, especially the bile acid deoxycholate, exerted strain-specific effects on these extracellular Stx2e levels. Antibiotics also affected extracellular Stx2e levels with ciprofloxacin and enrofloxacin inducing a substantial increase in toxin production in certain strains. Genome analysis revealed that these strains encode a holin gene downstream of the Stx2e operon. Deleting this holin gene abolished the antibiotic-induced increase in extracellular Stx2e levels, while introducing holin expression in unresponsive strains increased the presence of Stx2e in the extracellular environment. These findings unravel a role for phage holins in Stx2e secretion and highlight the intricate interplay between genetic and environmental factors in regulating Stx2e production in porcine STEC strains. Together, our results offer insights into STEC pathogenesis.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.