Yoonah R Oh, Se Eun Park, Hee Kyung Kim, Hyungseok Seo, Min-Kyoo Shin
{"title":"Microglial PLXDC2 Modulates Aβ Phagocytosis and Inflammatory Responses.","authors":"Yoonah R Oh, Se Eun Park, Hee Kyung Kim, Hyungseok Seo, Min-Kyoo Shin","doi":"10.4062/biomolther.2025.150","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia have emerged as key regulators in Alzheimer's disease (AD), yet the molecular factors driving their dysfunction remain unclear. Through integrative transcriptomic and proteomic analyses, we identified PLXDC2, a transmembrane receptor, as a protein consistently upregulated in the AD brain and cerebrospinal fluid. Single-nucleus RNA-seq confirmed its microglia-specific enrichment, particularly in lipid-processing, phagocytic, and inflammatory subclusters. Functional assays revealed that PLXDC2 overexpression in BV2 microglial cells impaired Aβ uptake and suppressed pro-inflammatory cytokines <i>Il-6</i> and <i>Il-1β</i>, without altering lipid droplet formation. These findings indicate that PLXDC2 plays a regulatory role in critical microglial functions and may drive AD pathogenesis by disrupting phagocytic activity and immune responses.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2025.150","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Microglia have emerged as key regulators in Alzheimer's disease (AD), yet the molecular factors driving their dysfunction remain unclear. Through integrative transcriptomic and proteomic analyses, we identified PLXDC2, a transmembrane receptor, as a protein consistently upregulated in the AD brain and cerebrospinal fluid. Single-nucleus RNA-seq confirmed its microglia-specific enrichment, particularly in lipid-processing, phagocytic, and inflammatory subclusters. Functional assays revealed that PLXDC2 overexpression in BV2 microglial cells impaired Aβ uptake and suppressed pro-inflammatory cytokines Il-6 and Il-1β, without altering lipid droplet formation. These findings indicate that PLXDC2 plays a regulatory role in critical microglial functions and may drive AD pathogenesis by disrupting phagocytic activity and immune responses.
期刊介绍:
Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.