Benjamin R Harrison, Maria Partida-Aguilar, Abbey Marye, Danijel Djukovic, Mandy Kauffman, Matthew D Dunbar, Blaise L Mariner, Brianah M McCoy, Yadid M Algavi, Efrat Muller, Shiri Baum, Tal Bamberger, Dan Raftery, Kate E Creevy, Anne Avery, Elhanan Borenstein, Noah Snyder-Mackler, Daniel E L Promislow
{"title":"Protein Catabolites as Blood-Based Biomarkers of Aging Physiology: Findings From the Dog Aging Project.","authors":"Benjamin R Harrison, Maria Partida-Aguilar, Abbey Marye, Danijel Djukovic, Mandy Kauffman, Matthew D Dunbar, Blaise L Mariner, Brianah M McCoy, Yadid M Algavi, Efrat Muller, Shiri Baum, Tal Bamberger, Dan Raftery, Kate E Creevy, Anne Avery, Elhanan Borenstein, Noah Snyder-Mackler, Daniel E L Promislow","doi":"10.1111/acel.70226","DOIUrl":null,"url":null,"abstract":"<p><p>Our understanding of aging has grown through the study of systems biology, including single-cell analysis, proteomics and metabolomics. Studies in lab organisms in controlled environments, while powerful and complex, fall short of capturing the breadth of genetic and environmental variation in nature. Thus, there is now a major effort in geroscience to identify aging biomarkers that might be applied across the diversity of humans and other free-living species. To meet this challenge, the Dog Aging Project (DAP) aims to identify cross-sectional and longitudinal patterns of aging in complex systems, and how these are shaped by the diversity of genetic and environmental variation among companion dogs. Here we surveyed the plasma metabolome from the first year of sampling of the Precision Cohort of the DAP. By incorporating extensive metadata and whole genome sequencing, we overcome the limitations inherent in breed-based estimates of genetic effects, and probe the physiological basis of the age-related metabolome. We identified effects of age on approximately 36% of measured metabolites. We also discovered a novel biomarker of age in the post-translationally modified amino acids (ptmAAs). The ptmAAs, which are generated by protein hydrolysis, covaried both with age and with other biomarkers of amino acid metabolism, and in a way that was robust to diet. Clinical measures of kidney function mediated about half of the age effect on ptmAA levels. This work identifies ptmAAs as robust indicators of age in dogs, and points to kidney function as a physiological mediator of age-associated variation in the plasma metabolome.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70226"},"PeriodicalIF":7.1000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70226","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Our understanding of aging has grown through the study of systems biology, including single-cell analysis, proteomics and metabolomics. Studies in lab organisms in controlled environments, while powerful and complex, fall short of capturing the breadth of genetic and environmental variation in nature. Thus, there is now a major effort in geroscience to identify aging biomarkers that might be applied across the diversity of humans and other free-living species. To meet this challenge, the Dog Aging Project (DAP) aims to identify cross-sectional and longitudinal patterns of aging in complex systems, and how these are shaped by the diversity of genetic and environmental variation among companion dogs. Here we surveyed the plasma metabolome from the first year of sampling of the Precision Cohort of the DAP. By incorporating extensive metadata and whole genome sequencing, we overcome the limitations inherent in breed-based estimates of genetic effects, and probe the physiological basis of the age-related metabolome. We identified effects of age on approximately 36% of measured metabolites. We also discovered a novel biomarker of age in the post-translationally modified amino acids (ptmAAs). The ptmAAs, which are generated by protein hydrolysis, covaried both with age and with other biomarkers of amino acid metabolism, and in a way that was robust to diet. Clinical measures of kidney function mediated about half of the age effect on ptmAA levels. This work identifies ptmAAs as robust indicators of age in dogs, and points to kidney function as a physiological mediator of age-associated variation in the plasma metabolome.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.