Shanna Hamilton,Radmila Terentyeva,Roland Veress,Fruzsina Perger,Zuzana Nichtova,Mark Bannister,Jinxi Wang,Sage Quiggle,Rachel Battershell,Matthew W Gorr,Sandor Györke,Bum-Rak Choi,Christopher H George,Andriy E Belevych,György Csordás,Dmitry Terentyev
{"title":"Increased Intermembrane Space [Ca2+] Drives Mitochondrial Structural Damage in CPVT.","authors":"Shanna Hamilton,Radmila Terentyeva,Roland Veress,Fruzsina Perger,Zuzana Nichtova,Mark Bannister,Jinxi Wang,Sage Quiggle,Rachel Battershell,Matthew W Gorr,Sandor Györke,Bum-Rak Choi,Christopher H George,Andriy E Belevych,György Csordás,Dmitry Terentyev","doi":"10.1161/circresaha.125.326841","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nMitochondrial dysfunction caused by abnormally high RyR2 (ryanodine receptor) activity is a common finding in cardiovascular diseases. Mechanisms linking RyR2 gain of function with mitochondrial remodeling remain elusive. We hypothesized that RyR2 hyperactivity in cardiac disease increases [Ca2+] in the mitochondrial intermembrane space (IMS) and activates the Ca2+-sensitive protease calpain, driving remodeling of mitochondrial cristae architecture through cleavage of structural protein OPA1 (optic atrophy protein 1).\r\n\r\nMETHODS\r\nWe generated a highly arrhythmogenic rat model of catecholaminergic polymorphic ventricular tachycardia, induced by RyR2 gain-of-function mutation S2236L(±). We created a new biosensor to measure IMS-[Ca2+] in adult cardiomyocytes with intact Ca2+ cycling. We used ex vivo whole heart optical mapping, confocal and electron microscopy, as well as in vivo/in vitro gene editing techniques to test the effects of calpain in the IMS.\r\n\r\nRESULTS\r\nWe found altered mitochondrial cristae structure, increased IMS-[Ca2+], reduced OPA1 expression, and augmented mito-reactive oxygen species emission in catecholaminergic polymorphic ventricular tachycardia myocytes. We show that calpain-mediated OPA1 cleavage led to disrupted cristae organization and, thereby, decreased electron transport chain supercomplex assembly, resulting in accelerated reactive oxygen species production. Genetic inhibition of calpain activity in IMS reversed mitochondria structural defects in catecholaminergic polymorphic ventricular tachycardia myocytes and reduced arrhythmic burden in ex vivo optically mapped hearts.\r\n\r\nCONCLUSIONS\r\nOur data suggest that RyR2 hyperactivity contributes to mitochondrial structural damage by promoting an increase in IMS-[Ca2+], sufficient to activate IMS-residing calpain. Calpain activation leads to proteolysis of OPA1 and cristae widening, thereby decreasing assembly of electron transport chain components into supercomplexes. Consequently, excessive mito-reactive oxygen species release critically contributes to RyR2 hyperactivation and ventricular tachyarrhythmia. Our new findings suggest that targeting IMS calpain may be beneficial in patients at risk for sudden cardiac death.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"93 1 1","pages":""},"PeriodicalIF":16.2000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/circresaha.125.326841","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
Mitochondrial dysfunction caused by abnormally high RyR2 (ryanodine receptor) activity is a common finding in cardiovascular diseases. Mechanisms linking RyR2 gain of function with mitochondrial remodeling remain elusive. We hypothesized that RyR2 hyperactivity in cardiac disease increases [Ca2+] in the mitochondrial intermembrane space (IMS) and activates the Ca2+-sensitive protease calpain, driving remodeling of mitochondrial cristae architecture through cleavage of structural protein OPA1 (optic atrophy protein 1).
METHODS
We generated a highly arrhythmogenic rat model of catecholaminergic polymorphic ventricular tachycardia, induced by RyR2 gain-of-function mutation S2236L(±). We created a new biosensor to measure IMS-[Ca2+] in adult cardiomyocytes with intact Ca2+ cycling. We used ex vivo whole heart optical mapping, confocal and electron microscopy, as well as in vivo/in vitro gene editing techniques to test the effects of calpain in the IMS.
RESULTS
We found altered mitochondrial cristae structure, increased IMS-[Ca2+], reduced OPA1 expression, and augmented mito-reactive oxygen species emission in catecholaminergic polymorphic ventricular tachycardia myocytes. We show that calpain-mediated OPA1 cleavage led to disrupted cristae organization and, thereby, decreased electron transport chain supercomplex assembly, resulting in accelerated reactive oxygen species production. Genetic inhibition of calpain activity in IMS reversed mitochondria structural defects in catecholaminergic polymorphic ventricular tachycardia myocytes and reduced arrhythmic burden in ex vivo optically mapped hearts.
CONCLUSIONS
Our data suggest that RyR2 hyperactivity contributes to mitochondrial structural damage by promoting an increase in IMS-[Ca2+], sufficient to activate IMS-residing calpain. Calpain activation leads to proteolysis of OPA1 and cristae widening, thereby decreasing assembly of electron transport chain components into supercomplexes. Consequently, excessive mito-reactive oxygen species release critically contributes to RyR2 hyperactivation and ventricular tachyarrhythmia. Our new findings suggest that targeting IMS calpain may be beneficial in patients at risk for sudden cardiac death.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.