{"title":"The <i>Drosophila</i> ZER1 homolog interacts with ref(2)P to regulate autophagy and Keap1-cnc/NFE2L2/Nrf2-mediated oxidative stress.","authors":"Yi-Ting Wang, Ya-Ting Shen, Hsuan-Yu Weng, Jung-Kun Wen, Guang-Chao Chen","doi":"10.1080/15548627.2025.2577771","DOIUrl":null,"url":null,"abstract":"<p><p>The ubiquitin-proteasome system (UPS) and macroautophagy/autophagy are two major pathways for maintaining cellular protein homeostasis. Increasing evidence has highlighted the complex interactions and crosstalk between these pathways; however, the specific molecules and mechanisms mediating the interplay between the UPS and autophagy are still not fully elucidated. In this study, we discovered that knocking down the <i>Drosophila</i> Cul2 (Cullin 2)-RING ubiquitin ligase complex adaptor CG12084/DmZer1 impedes autophagy and autophagic flux. DmZer1 interacts with the <i>Drosophila</i> SQSTM1/p62 homolog ref(2)P, promoting its association with ubiquitinated proteins and degradation. ref(2)P is a crucial player in regulating autophagy and the Keap1-cnc/NFE2L2 pathway-mediated antioxidant response. Knockdown of DmZer1 leads to the formation of ref(2)P bodies, which sequester Keap1 and promote cnc/NFE2L2-mediated antioxidant responses under oxidative stress conditions. These findings reveal the pivotal role of DmZer1 in regulating autophagy and the ref(2)P-Keap1-cnc/NFE2L2-mediated oxidative stress response.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2577771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The ubiquitin-proteasome system (UPS) and macroautophagy/autophagy are two major pathways for maintaining cellular protein homeostasis. Increasing evidence has highlighted the complex interactions and crosstalk between these pathways; however, the specific molecules and mechanisms mediating the interplay between the UPS and autophagy are still not fully elucidated. In this study, we discovered that knocking down the Drosophila Cul2 (Cullin 2)-RING ubiquitin ligase complex adaptor CG12084/DmZer1 impedes autophagy and autophagic flux. DmZer1 interacts with the Drosophila SQSTM1/p62 homolog ref(2)P, promoting its association with ubiquitinated proteins and degradation. ref(2)P is a crucial player in regulating autophagy and the Keap1-cnc/NFE2L2 pathway-mediated antioxidant response. Knockdown of DmZer1 leads to the formation of ref(2)P bodies, which sequester Keap1 and promote cnc/NFE2L2-mediated antioxidant responses under oxidative stress conditions. These findings reveal the pivotal role of DmZer1 in regulating autophagy and the ref(2)P-Keap1-cnc/NFE2L2-mediated oxidative stress response.