Cell Decoder: decoding cell identity with multi-scale explainable deep learning.

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jun Zhu, Zeyang Zhang, Yujia Xiang, Beini Xie, Xinwen Dong, Linhai Xie, Peijie Zhou, Rongyan Yao, Xiaowen Wang, Yang Li, Fuchu He, Wenwu Zhu, Ziwei Zhang, Cheng Chang
{"title":"Cell Decoder: decoding cell identity with multi-scale explainable deep learning.","authors":"Jun Zhu, Zeyang Zhang, Yujia Xiang, Beini Xie, Xinwen Dong, Linhai Xie, Peijie Zhou, Rongyan Yao, Xiaowen Wang, Yang Li, Fuchu He, Wenwu Zhu, Ziwei Zhang, Cheng Chang","doi":"10.1186/s13059-025-03832-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cells are the fundamental units of life, and understanding their diversity and functionality requires detailed characterization. The rise of single-cell omics data enables this, yet current deep learning approaches lack multi-scale interpretability.</p><p><strong>Results: </strong>We introduce Cell Decoder, a model that integrates biological prior knowledge to provide a multi-scale representation of cells. Using automated machine learning and post hoc analysis, Cell Decoder decodes cell identity and outperforms existing methods. It offers multi-view interpretability and facilitates data integration.</p><p><strong>Conclusions: </strong>Applied to human bone and mouse embryonic data, Cell Decoder reveals the multi-scale heterogeneity of cell identities, providing a powerful framework for advancing our understanding of cellular diversity.</p>","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"26 1","pages":"359"},"PeriodicalIF":10.1000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12536527/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03832-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cells are the fundamental units of life, and understanding their diversity and functionality requires detailed characterization. The rise of single-cell omics data enables this, yet current deep learning approaches lack multi-scale interpretability.

Results: We introduce Cell Decoder, a model that integrates biological prior knowledge to provide a multi-scale representation of cells. Using automated machine learning and post hoc analysis, Cell Decoder decodes cell identity and outperforms existing methods. It offers multi-view interpretability and facilitates data integration.

Conclusions: Applied to human bone and mouse embryonic data, Cell Decoder reveals the multi-scale heterogeneity of cell identities, providing a powerful framework for advancing our understanding of cellular diversity.

细胞解码器:用多尺度可解释的深度学习解码细胞身份。
背景:细胞是生命的基本单位,了解它们的多样性和功能需要详细的表征。单细胞组学数据的兴起使这成为可能,但目前的深度学习方法缺乏多尺度的可解释性。结果:我们引入了Cell Decoder,这是一个集成了生物学先验知识的模型,可以提供细胞的多尺度表示。使用自动机器学习和事后分析,细胞解码器解码细胞身份和超越现有的方法。它提供了多视图可解释性并促进了数据集成。结论:应用于人骨和小鼠胚胎数据,Cell Decoder揭示了细胞身份的多尺度异质性,为推进我们对细胞多样性的理解提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信