Ya Chen, Susanne Winiwarter, Roxane Axel Jacob, Marie Ahlqvist, Angelica Mazzolari, Filip Miljković, Johannes Kirchmair
{"title":"Metabolite Identification Data in Drug Discovery, Part 2: Site-of-Metabolism Annotation, Analysis, and Exploration for Machine Learning.","authors":"Ya Chen, Susanne Winiwarter, Roxane Axel Jacob, Marie Ahlqvist, Angelica Mazzolari, Filip Miljković, Johannes Kirchmair","doi":"10.1021/acs.molpharmaceut.5c00740","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to pinpoint and predict sites of metabolism (SoMs) is essential for designing and optimizing effective and safe bioactive small molecules. However, the number of molecules with annotated SoMs is limited, hindering the advancement of data-driven methods such as machine learning for metabolism prediction. Here, we provide a comprehensive characterization of SoM data obtained from the readouts of a human hepatocyte assay conducted at AstraZeneca Gothenburg. We explore a new strategy for SoM annotation that accounts for uncertainty in the experimental data, and we relate our findings to the most comprehensive SoM data collection available to date. Our study includes entropy analysis of SoM annotations, accompanied by representative examples that highlight the complexities of interpreting and working with metabolism data. Furthermore, we demonstrate the impact and value of the new metabolism data on SoM prediction. Importantly, a substantial portion of the data generated and analyzed as part of this work is made publicly available.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.5c00740","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to pinpoint and predict sites of metabolism (SoMs) is essential for designing and optimizing effective and safe bioactive small molecules. However, the number of molecules with annotated SoMs is limited, hindering the advancement of data-driven methods such as machine learning for metabolism prediction. Here, we provide a comprehensive characterization of SoM data obtained from the readouts of a human hepatocyte assay conducted at AstraZeneca Gothenburg. We explore a new strategy for SoM annotation that accounts for uncertainty in the experimental data, and we relate our findings to the most comprehensive SoM data collection available to date. Our study includes entropy analysis of SoM annotations, accompanied by representative examples that highlight the complexities of interpreting and working with metabolism data. Furthermore, we demonstrate the impact and value of the new metabolism data on SoM prediction. Importantly, a substantial portion of the data generated and analyzed as part of this work is made publicly available.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.