Metabolite Identification Data in Drug Discovery, Part 2: Site-of-Metabolism Annotation, Analysis, and Exploration for Machine Learning.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Ya Chen, Susanne Winiwarter, Roxane Axel Jacob, Marie Ahlqvist, Angelica Mazzolari, Filip Miljković, Johannes Kirchmair
{"title":"Metabolite Identification Data in Drug Discovery, Part 2: Site-of-Metabolism Annotation, Analysis, and Exploration for Machine Learning.","authors":"Ya Chen, Susanne Winiwarter, Roxane Axel Jacob, Marie Ahlqvist, Angelica Mazzolari, Filip Miljković, Johannes Kirchmair","doi":"10.1021/acs.molpharmaceut.5c00740","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to pinpoint and predict sites of metabolism (SoMs) is essential for designing and optimizing effective and safe bioactive small molecules. However, the number of molecules with annotated SoMs is limited, hindering the advancement of data-driven methods such as machine learning for metabolism prediction. Here, we provide a comprehensive characterization of SoM data obtained from the readouts of a human hepatocyte assay conducted at AstraZeneca Gothenburg. We explore a new strategy for SoM annotation that accounts for uncertainty in the experimental data, and we relate our findings to the most comprehensive SoM data collection available to date. Our study includes entropy analysis of SoM annotations, accompanied by representative examples that highlight the complexities of interpreting and working with metabolism data. Furthermore, we demonstrate the impact and value of the new metabolism data on SoM prediction. Importantly, a substantial portion of the data generated and analyzed as part of this work is made publicly available.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.5c00740","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The ability to pinpoint and predict sites of metabolism (SoMs) is essential for designing and optimizing effective and safe bioactive small molecules. However, the number of molecules with annotated SoMs is limited, hindering the advancement of data-driven methods such as machine learning for metabolism prediction. Here, we provide a comprehensive characterization of SoM data obtained from the readouts of a human hepatocyte assay conducted at AstraZeneca Gothenburg. We explore a new strategy for SoM annotation that accounts for uncertainty in the experimental data, and we relate our findings to the most comprehensive SoM data collection available to date. Our study includes entropy analysis of SoM annotations, accompanied by representative examples that highlight the complexities of interpreting and working with metabolism data. Furthermore, we demonstrate the impact and value of the new metabolism data on SoM prediction. Importantly, a substantial portion of the data generated and analyzed as part of this work is made publicly available.

药物发现中的代谢物鉴定数据,第2部分:机器学习的代谢位点注释、分析和探索。
精确定位和预测代谢位点(SoMs)的能力对于设计和优化有效和安全的生物活性小分子是必不可少的。然而,带有注释SoMs的分子数量有限,阻碍了数据驱动方法(如用于代谢预测的机器学习)的发展。在这里,我们提供了从阿斯利康哥德堡进行的人肝细胞测定的读数中获得的SoM数据的全面表征。我们探索了一种新的SoM注释策略,该策略考虑了实验数据中的不确定性,并将我们的发现与迄今为止最全面的SoM数据收集联系起来。我们的研究包括SoM注释的熵分析,并附有代表性的例子,突出了解释和处理代谢数据的复杂性。此外,我们证明了新的代谢数据对SoM预测的影响和价值。重要的是,作为这项工作的一部分生成和分析的数据的很大一部分是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信