Zhe Zheng , Jin Han , Ke-Yin Chen , Xin-Yu Cao , Xin-Zheng Lu , Jia-Rui Lin
{"title":"Translating regulatory clauses into executable codes for building design checking via large language model driven function matching and composing","authors":"Zhe Zheng , Jin Han , Ke-Yin Chen , Xin-Yu Cao , Xin-Zheng Lu , Jia-Rui Lin","doi":"10.1016/j.engappai.2025.112823","DOIUrl":null,"url":null,"abstract":"<div><div>Translating clauses into executable code is a vital stage of automated rule checking (ARC) and is essential for effective building design compliance checking, particularly for rules with implicit properties or complex logic requiring domain knowledge. Thus, by systematically analyzing building clauses, 66 atomic functions are defined first to encapsulate common computational logics. Then, LLM-FuncMapper is proposed, a large language model (LLM)-based approach with rule-based adaptive prompts that match clauses to atomic functions. Finally, executable code is generated by composing functions through the LLMs. Experiments show LLM-FuncMapper outperforms fine-tuning methods by 19 % in function matching while significantly reducing manual annotation efforts. Case study demonstrates that LLM-FuncMapper can automatically compose multiple atomic functions to generate executable code, boosting rule-checking efficiency. To our knowledge, this research represents the first application of LLMs for interpreting complex design clauses into executable code, which may shed light on further adoption of LLMs in the construction domain.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"163 ","pages":"Article 112823"},"PeriodicalIF":8.0000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625028544","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Translating clauses into executable code is a vital stage of automated rule checking (ARC) and is essential for effective building design compliance checking, particularly for rules with implicit properties or complex logic requiring domain knowledge. Thus, by systematically analyzing building clauses, 66 atomic functions are defined first to encapsulate common computational logics. Then, LLM-FuncMapper is proposed, a large language model (LLM)-based approach with rule-based adaptive prompts that match clauses to atomic functions. Finally, executable code is generated by composing functions through the LLMs. Experiments show LLM-FuncMapper outperforms fine-tuning methods by 19 % in function matching while significantly reducing manual annotation efforts. Case study demonstrates that LLM-FuncMapper can automatically compose multiple atomic functions to generate executable code, boosting rule-checking efficiency. To our knowledge, this research represents the first application of LLMs for interpreting complex design clauses into executable code, which may shed light on further adoption of LLMs in the construction domain.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.