Tailoring Si/Mn ratio to optimize magnetocaloric performance of FeCoNi-based high-entropy alloys

IF 4.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xiaojiang Zhai , Xiaodong Si , Yunshan Dong , Yongsheng Liu
{"title":"Tailoring Si/Mn ratio to optimize magnetocaloric performance of FeCoNi-based high-entropy alloys","authors":"Xiaojiang Zhai ,&nbsp;Xiaodong Si ,&nbsp;Yunshan Dong ,&nbsp;Yongsheng Liu","doi":"10.1016/j.intermet.2025.109024","DOIUrl":null,"url":null,"abstract":"<div><div>This study systematically investigates the influence of the Si/Mn ratio on the magnetocaloric properties of FeCoNiSi<sub>x</sub>Mn<sub>0.4-x</sub> (x = 0.1, 0.2, and 0.3) high-entropy alloys (HEAs) using a multi-scale computational approach. By combining special quasi-random structure (SQS) modeling, first-principles density functional theory (DFT) calculations, and atomic-scale magnetic simulations, we elucidate the synergistic effects of compositional disorder on the electronic structure and magnetic ordering. Key results indicate that increasing the Si content reduces the cell volume via atomic size effects and decreases the total magnetic moment, while significantly raising the Curie temperature (599–673 K) due to enhanced ferromagnetic exchange coupling. Under an applied field of 5 T, an optimized magnetocaloric response is observed: at x = 0.3, the magnetic entropy change exhibits a full width at half maximum of 2.61 J/(kg·K) along with a high relative cooling power (RCP = 515 J/kg), while a peak temperature-averaged entropy change (TEC) of 3.17 J/(kg·K) is achieved at x = 0.2 over a temperature span of 10 K (ΔT<sub>H-C</sub> = 10 K). The maximum half-peak width of the magnetic entropy change (δT<sub>FWHM</sub>) for this alloy system ranges from 156.0 K to 196.1 K. This work reveals an underlying composition–electronic–magnetic correlation mechanism, suggesting promising potential for designing high-temperature solid-state refrigeration materials with broad operational windows.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"188 ","pages":"Article 109024"},"PeriodicalIF":4.8000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525003899","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study systematically investigates the influence of the Si/Mn ratio on the magnetocaloric properties of FeCoNiSixMn0.4-x (x = 0.1, 0.2, and 0.3) high-entropy alloys (HEAs) using a multi-scale computational approach. By combining special quasi-random structure (SQS) modeling, first-principles density functional theory (DFT) calculations, and atomic-scale magnetic simulations, we elucidate the synergistic effects of compositional disorder on the electronic structure and magnetic ordering. Key results indicate that increasing the Si content reduces the cell volume via atomic size effects and decreases the total magnetic moment, while significantly raising the Curie temperature (599–673 K) due to enhanced ferromagnetic exchange coupling. Under an applied field of 5 T, an optimized magnetocaloric response is observed: at x = 0.3, the magnetic entropy change exhibits a full width at half maximum of 2.61 J/(kg·K) along with a high relative cooling power (RCP = 515 J/kg), while a peak temperature-averaged entropy change (TEC) of 3.17 J/(kg·K) is achieved at x = 0.2 over a temperature span of 10 K (ΔTH-C = 10 K). The maximum half-peak width of the magnetic entropy change (δTFWHM) for this alloy system ranges from 156.0 K to 196.1 K. This work reveals an underlying composition–electronic–magnetic correlation mechanism, suggesting promising potential for designing high-temperature solid-state refrigeration materials with broad operational windows.
调整Si/Mn比以优化fecni基高熵合金的磁热性能
本研究采用多尺度计算方法系统地研究了Si/Mn比对FeCoNiSixMn0.4-x (x = 0.1, 0.2和0.3)高熵合金(HEAs)磁热性能的影响。通过结合特殊准随机结构(SQS)模型、第一性原理密度泛函理论(DFT)计算和原子尺度的磁性模拟,我们阐明了组成无序对电子结构和磁性有序的协同效应。关键结果表明,硅含量的增加通过原子尺寸效应减小了电池体积,降低了总磁矩,同时由于铁磁交换耦合增强而显著提高了居里温度(599 ~ 673 K)。在5 T的磁场下,观察到一个优化的磁热响应:当x = 0.3时,磁熵变化的全宽度为2.61 J/(kg·K),并具有较高的相对冷却功率(RCP = 515 J/kg),而当x = 0.2时,温度平均熵变化(TEC)的峰值为3.17 J/(kg·K),温度跨度为10 K (ΔTH-C = 10 K)。该合金体系的磁熵变化δTFWHM的最大半峰宽度为156.0 ~ 196.1 K。这项工作揭示了一种潜在的成分-电子-磁性相关机制,表明设计具有宽操作窗口的高温固态制冷材料具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信