Qingwei Meng , Wei Qi Yan , Cong Xu , Zhaoxu Zhang , Xia Hao , Hui Chen , Wei Liu , Yanjie Li
{"title":"Optimization of Sassafras tzumu leaves color quantification with UAV RGB imaging and Sassafras-net","authors":"Qingwei Meng , Wei Qi Yan , Cong Xu , Zhaoxu Zhang , Xia Hao , Hui Chen , Wei Liu , Yanjie Li","doi":"10.1016/j.inpa.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>Quantifying the leaf density and coloration of trees is critical for assessing landscape esthetics and photosynthetic efficiency; however, traditional leaf-counting methods are labor-intensive and potentially harmful to trees, making accurate measurements challenging. To address these issues, we present “Sassafras-net,” an advanced model specifically designed to detect and count colored leaves on <em>Sassafras tzumu</em> trees.</div><div>The methodology consists of two steps. First, we used an improved model termed YOLOX-CBAM to accurately detect and isolate individual trees. This model proved to be more effective than alternatives, such as YOLOX, YOLOv8, YOLOv7, YOLOv5, and Fater-RCNN. Second, the Sassafras-net model, which is based on the CCTrans network, counts the number of colored leaves per tree. Compared with the original CCTrans model of 52.30 and 84.90, the Sassafras-net model achieved significantly lower mean absolute error and mean squared error values of 27.29 and 39.00, respectively. These results confirm the ability of the model to accurately and efficiently quantify colored leaves.</div><div>To the best of our knowledge, this is the first study to quantify colored leaves in trees. Our method provides forestry researchers with an effective and economical tool for selecting and breeding <em>S. tzumu</em> trees with enhanced color traits. In addition, this study opens new avenues for studying tree traits related to leaf coloration.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 3","pages":"Pages 384-397"},"PeriodicalIF":7.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317325000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantifying the leaf density and coloration of trees is critical for assessing landscape esthetics and photosynthetic efficiency; however, traditional leaf-counting methods are labor-intensive and potentially harmful to trees, making accurate measurements challenging. To address these issues, we present “Sassafras-net,” an advanced model specifically designed to detect and count colored leaves on Sassafras tzumu trees.
The methodology consists of two steps. First, we used an improved model termed YOLOX-CBAM to accurately detect and isolate individual trees. This model proved to be more effective than alternatives, such as YOLOX, YOLOv8, YOLOv7, YOLOv5, and Fater-RCNN. Second, the Sassafras-net model, which is based on the CCTrans network, counts the number of colored leaves per tree. Compared with the original CCTrans model of 52.30 and 84.90, the Sassafras-net model achieved significantly lower mean absolute error and mean squared error values of 27.29 and 39.00, respectively. These results confirm the ability of the model to accurately and efficiently quantify colored leaves.
To the best of our knowledge, this is the first study to quantify colored leaves in trees. Our method provides forestry researchers with an effective and economical tool for selecting and breeding S. tzumu trees with enhanced color traits. In addition, this study opens new avenues for studying tree traits related to leaf coloration.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining