LSTM-TRPS: Trajectory reconstruction protection strategy based on semantic information encoding

IF 4.6 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jing Zhang , Tongxin Li , Haoze Hu , Huaxiong Liao , Xiu-Cai Ye
{"title":"LSTM-TRPS: Trajectory reconstruction protection strategy based on semantic information encoding","authors":"Jing Zhang ,&nbsp;Tongxin Li ,&nbsp;Haoze Hu ,&nbsp;Huaxiong Liao ,&nbsp;Xiu-Cai Ye","doi":"10.1016/j.comnet.2025.111768","DOIUrl":null,"url":null,"abstract":"<div><div>Mobility data from IoT devices are vulnerable to attacks, and existing privacy methods often fail to defend against background knowledge adversaries. To mitigate this risk, a Long Short Term Memory based Trajectory Reconstruction Protection Strategy (LSTM-TRPS) is proposed to generate utility-preserving but unidentifiable synthetic trajectories. LSTM-TRPS is designed as a post-processing defense, maintaining essential mobility patterns for analytics while blocking reconstruction attempts. It consists of four modules: (1) Point of interest (POI) Semantic Annotation (PSA) for geo-temporal labeling; (2) Hasse Diagram-based Semantic Encoding (HDSE) to preserve hierarchical semantics; (3) Feature Embedding and Adaptive Matrix Combination (FEAMC) to fuse spatial temporal features; and (4) a Bi-LSTM generator to produce robust trajectories. Experiments on real-world mobility datasets show that LSTM-TRPS reduces Hausdorff distance by 12.7 %, improves temporal alignment by 20 %, and lowers privacy leakage by over 50 % under strict privacy budgets. It also achieves over 90 % POI retention and strong generalization across datasets, making it well suited for privacy-preserving trajectory publishing in IoT and smart mobility scenarios.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"273 ","pages":"Article 111768"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625007340","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Mobility data from IoT devices are vulnerable to attacks, and existing privacy methods often fail to defend against background knowledge adversaries. To mitigate this risk, a Long Short Term Memory based Trajectory Reconstruction Protection Strategy (LSTM-TRPS) is proposed to generate utility-preserving but unidentifiable synthetic trajectories. LSTM-TRPS is designed as a post-processing defense, maintaining essential mobility patterns for analytics while blocking reconstruction attempts. It consists of four modules: (1) Point of interest (POI) Semantic Annotation (PSA) for geo-temporal labeling; (2) Hasse Diagram-based Semantic Encoding (HDSE) to preserve hierarchical semantics; (3) Feature Embedding and Adaptive Matrix Combination (FEAMC) to fuse spatial temporal features; and (4) a Bi-LSTM generator to produce robust trajectories. Experiments on real-world mobility datasets show that LSTM-TRPS reduces Hausdorff distance by 12.7 %, improves temporal alignment by 20 %, and lowers privacy leakage by over 50 % under strict privacy budgets. It also achieves over 90 % POI retention and strong generalization across datasets, making it well suited for privacy-preserving trajectory publishing in IoT and smart mobility scenarios.
LSTM-TRPS:基于语义信息编码的轨迹重构保护策略
来自物联网设备的移动数据容易受到攻击,现有的隐私方法往往无法防御背景知识对手。为了降低这种风险,提出了一种基于长短期记忆的轨迹重建保护策略(LSTM-TRPS)来生成效用保留但无法识别的合成轨迹。LSTM-TRPS被设计为后处理防御,在阻止重建尝试的同时保持分析的基本移动模式。它包括四个模块:(1)兴趣点(POI)语义标注(PSA)用于地理时间标记;(2)基于Hasse图的语义编码(HDSE),保持分层语义;(3)特征嵌入与自适应矩阵组合(FEAMC)融合时空特征;(4)利用Bi-LSTM生成鲁棒轨迹。在现实移动数据集上的实验表明,在严格的隐私预算下,LSTM-TRPS将Hausdorff距离降低了12.7%,将时间对准提高了20%,将隐私泄漏降低了50%以上。它还实现了超过90%的POI保留和跨数据集的强大泛化,使其非常适合在物联网和智能移动场景中发布隐私保护轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信