BARTSIMP: Flexible spatial covariate modeling and prediction using Bayesian Additive Regression Trees

IF 1.7 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Alex Ziyu Jiang , Jon Wakefield
{"title":"BARTSIMP: Flexible spatial covariate modeling and prediction using Bayesian Additive Regression Trees","authors":"Alex Ziyu Jiang ,&nbsp;Jon Wakefield","doi":"10.1016/j.sste.2025.100757","DOIUrl":null,"url":null,"abstract":"<div><div>Prediction is a classic challenge in spatial statistics and the inclusion of spatial covariates can greatly improve predictive performance when incorporated into a model with latent spatial effects. It is desirable to develop flexible regression models that allow for nonlinearities and interactions in the covariate specification. Existing machine learning approaches that allow for spatial dependence in the residuals fail to provide reliable uncertainty estimates. In this paper, we investigate the combination of a Gaussian process spatial model with a Bayesian Additive Regression Tree (BART) model. The computational burden of the approach is reduced by combining Markov chain Monte Carlo (MCMC) with the Integrated Nested Laplace Approximation (INLA) technique. We study the performance of the method first via simulation. We then use the model to predict anthropometric responses in Kenya, with the data collected via a complex sampling design. In particular, household survey data are collected via stratified two-stage unequal probability cluster sampling, which requires special care when modeled.</div></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"55 ","pages":"Article 100757"},"PeriodicalIF":1.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584525000486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Prediction is a classic challenge in spatial statistics and the inclusion of spatial covariates can greatly improve predictive performance when incorporated into a model with latent spatial effects. It is desirable to develop flexible regression models that allow for nonlinearities and interactions in the covariate specification. Existing machine learning approaches that allow for spatial dependence in the residuals fail to provide reliable uncertainty estimates. In this paper, we investigate the combination of a Gaussian process spatial model with a Bayesian Additive Regression Tree (BART) model. The computational burden of the approach is reduced by combining Markov chain Monte Carlo (MCMC) with the Integrated Nested Laplace Approximation (INLA) technique. We study the performance of the method first via simulation. We then use the model to predict anthropometric responses in Kenya, with the data collected via a complex sampling design. In particular, household survey data are collected via stratified two-stage unequal probability cluster sampling, which requires special care when modeled.
使用贝叶斯加性回归树的灵活空间协变量建模和预测
预测是空间统计中的一个经典挑战,当将空间协变量纳入具有潜在空间效应的模型时,可以极大地提高预测性能。需要开发灵活的回归模型,允许协变量规范中的非线性和相互作用。现有的允许残差空间依赖的机器学习方法无法提供可靠的不确定性估计。本文研究了高斯过程空间模型与贝叶斯加性回归树(BART)模型的结合。将马尔可夫链蒙特卡罗(MCMC)与积分嵌套拉普拉斯近似(INLA)技术相结合,减少了该方法的计算量。我们首先通过仿真研究了该方法的性能。然后,我们使用该模型来预测肯尼亚的人体测量反应,通过复杂的抽样设计收集数据。特别是,住户调查数据是通过分层两阶段不等概率聚类抽样收集的,在建模时需要特别注意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信