SGD-font: Style and glyph decoupling for one-shot font generation

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhenhua Li , Siyi Chen , Dong Liang
{"title":"SGD-font: Style and glyph decoupling for one-shot font generation","authors":"Zhenhua Li ,&nbsp;Siyi Chen ,&nbsp;Dong Liang","doi":"10.1016/j.knosys.2025.114600","DOIUrl":null,"url":null,"abstract":"<div><div>Automatic font generation aims to generate a complete font library by learning the font style from reference samples. Font generation is challenging because it needs to generate a set of sheer quantity of characters with consistent style and complicated structures of glyphs with limited reference font images, especially when the character or font style is unseen during training. In this paper, we propose a glyph control-based diffusion model for one-shot font generation. Specifically, we employ a style encoder to extract multi-scale style features and incorporate them into the reverse denoising steps of the diffusion model via cross-attention-based style fusion blocks. Decoupling style and glyph enables the combination of arbitrary styles and glyphs in font creation and allows users to generate fonts with unseen styles and unseen glyphs. In the inference stage, we introduce a multi-condition sampling strategy to effectively align the desired style and target glyph. Comprehensive experiments and a user study show that our framework surpasses existing approaches for both seen and unseen fonts. We further demonstrate its capability for style interpolation and cross-lingual font generation. The code is available at <span><span>https://github.com/ChenSiyi1/SGD-Font</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"330 ","pages":"Article 114600"},"PeriodicalIF":7.6000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125016399","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic font generation aims to generate a complete font library by learning the font style from reference samples. Font generation is challenging because it needs to generate a set of sheer quantity of characters with consistent style and complicated structures of glyphs with limited reference font images, especially when the character or font style is unseen during training. In this paper, we propose a glyph control-based diffusion model for one-shot font generation. Specifically, we employ a style encoder to extract multi-scale style features and incorporate them into the reverse denoising steps of the diffusion model via cross-attention-based style fusion blocks. Decoupling style and glyph enables the combination of arbitrary styles and glyphs in font creation and allows users to generate fonts with unseen styles and unseen glyphs. In the inference stage, we introduce a multi-condition sampling strategy to effectively align the desired style and target glyph. Comprehensive experiments and a user study show that our framework surpasses existing approaches for both seen and unseen fonts. We further demonstrate its capability for style interpolation and cross-lingual font generation. The code is available at https://github.com/ChenSiyi1/SGD-Font.
SGD-font:一次性字体生成的样式和字形解耦
自动字体生成旨在通过从参考样本中学习字体样式来生成完整的字体库。字体生成是具有挑战性的,因为它需要生成一组绝对数量的具有一致风格的字符和具有有限参考字体图像的复杂字形结构的字符,特别是当在训练期间看不到字符或字体样式时。本文提出了一种基于字形控制的一次性字体生成扩散模型。具体来说,我们使用风格编码器提取多尺度风格特征,并通过基于交叉注意力的风格融合块将其纳入扩散模型的反向去噪步骤。解耦样式和字形允许在字体创建中组合任意样式和字形,并允许用户生成具有不可见样式和不可见字形的字体。在推理阶段,我们引入了一种多条件采样策略来有效地对齐期望的样式和目标字形。综合实验和用户研究表明,我们的框架在可见字体和不可见字体方面都优于现有的方法。我们进一步展示了它在样式插值和跨语言字体生成方面的能力。代码可在https://github.com/ChenSiyi1/SGD-Font上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信