San Dinh, Yao Tong, Zhenyu Wei, Owen Gerdes, L.T. Biegler
{"title":"Nonlinear model predictive control with an infinite horizon approximation","authors":"San Dinh, Yao Tong, Zhenyu Wei, Owen Gerdes, L.T. Biegler","doi":"10.1016/j.jprocont.2025.103565","DOIUrl":null,"url":null,"abstract":"<div><div>Current nonlinear model predictive control (NMPC) strategies are formulated as finite predictive horizon nonlinear programs (NLPs), which maintain NMPC stability and recursive feasibility through the construction of terminal cost functions and/or terminal constraints. However, computing these terminal properties may pose formidable challenges with a fixed horizon, particularly in the context of nonlinear dynamic processes. Motivated by these issues, we introduce an alternate moving horizon approach where the final element in the horizon is constructed from an infinite-horizon time transformation. The key feature of this approach lies in solving the proposed NMPC formulation as an extended boundary value problem, using orthogonal collocation on finite elements. Numerical stability is ensured through a dichotomy property for an infinite horizon optimal control problem, which pins down the unstable modes, extending beyond open-loop stable dynamic systems, and leads to both asymptotic and robust stability guarantees. The efficacy of the proposed NMPC formulation is demonstrated on three case studies, which validate the practical application and robustness of the developed approach on real-world problems.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"155 ","pages":"Article 103565"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152425001933","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Current nonlinear model predictive control (NMPC) strategies are formulated as finite predictive horizon nonlinear programs (NLPs), which maintain NMPC stability and recursive feasibility through the construction of terminal cost functions and/or terminal constraints. However, computing these terminal properties may pose formidable challenges with a fixed horizon, particularly in the context of nonlinear dynamic processes. Motivated by these issues, we introduce an alternate moving horizon approach where the final element in the horizon is constructed from an infinite-horizon time transformation. The key feature of this approach lies in solving the proposed NMPC formulation as an extended boundary value problem, using orthogonal collocation on finite elements. Numerical stability is ensured through a dichotomy property for an infinite horizon optimal control problem, which pins down the unstable modes, extending beyond open-loop stable dynamic systems, and leads to both asymptotic and robust stability guarantees. The efficacy of the proposed NMPC formulation is demonstrated on three case studies, which validate the practical application and robustness of the developed approach on real-world problems.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.