Boiler operation predictions by integrating thermo-fluid principles within an artificial neural network framework

IF 3.9 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
C. Bisset , R. Coetzer , PVZ. Venter
{"title":"Boiler operation predictions by integrating thermo-fluid principles within an artificial neural network framework","authors":"C. Bisset ,&nbsp;R. Coetzer ,&nbsp;PVZ. Venter","doi":"10.1016/j.jprocont.2025.103568","DOIUrl":null,"url":null,"abstract":"<div><div>Optimising boiler operations is challenging due to fluctuating conditions in complex thermo-fluid systems. This study introduces a novel approach to improve efficiency in coal-fired boilers by developing and validating an artificial neural network (ANN) model that provides both statistically accurate and scientifically feasible predictions. Three multi-layer perceptron (MLP) feedforward ANN models were developed, with variable selection supported by principal component analysis (PCA) and hyperparameter optimisation performed using Latin hypercube sampling (LHS). The best ANN achieved test root mean square errors (RMSEs) of 2.11 t/h for steam flow, 2.11 t/h for blowdown, 4.98 °C for superheated steam temperature, 0.69 bar for steam pressure, and 0.86 % for efficiency. The mean absolute percentage error (MAPE) for efficiency remained below 1.25 %, with deviations constrained within ±4.25 %. Statistical and thermodynamic validations were applied, including bootstrap aggregation of prediction variance and mass and energy balance checks. Results showed that 96.76 % of samples achieved water mass balance deviations of less than 0.01 %. Furthermore, 100 % of predictions for efficiency and energy output fell within a 5 % absolute error range. The novelty of this work lies in integrating ANN predictions with thermo-fluid validation. Theoretically, it advances current literature by bridging the gap between statistical accuracy and physical feasibility. Practically, it provides a reliable framework for evaluating efficiency in operational settings and lays the foundation for a machine learning (ML)–aided decision-support framework (DSF) for energy efficiency optimisation in coal-fired boilers.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"155 ","pages":"Article 103568"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152425001969","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Optimising boiler operations is challenging due to fluctuating conditions in complex thermo-fluid systems. This study introduces a novel approach to improve efficiency in coal-fired boilers by developing and validating an artificial neural network (ANN) model that provides both statistically accurate and scientifically feasible predictions. Three multi-layer perceptron (MLP) feedforward ANN models were developed, with variable selection supported by principal component analysis (PCA) and hyperparameter optimisation performed using Latin hypercube sampling (LHS). The best ANN achieved test root mean square errors (RMSEs) of 2.11 t/h for steam flow, 2.11 t/h for blowdown, 4.98 °C for superheated steam temperature, 0.69 bar for steam pressure, and 0.86 % for efficiency. The mean absolute percentage error (MAPE) for efficiency remained below 1.25 %, with deviations constrained within ±4.25 %. Statistical and thermodynamic validations were applied, including bootstrap aggregation of prediction variance and mass and energy balance checks. Results showed that 96.76 % of samples achieved water mass balance deviations of less than 0.01 %. Furthermore, 100 % of predictions for efficiency and energy output fell within a 5 % absolute error range. The novelty of this work lies in integrating ANN predictions with thermo-fluid validation. Theoretically, it advances current literature by bridging the gap between statistical accuracy and physical feasibility. Practically, it provides a reliable framework for evaluating efficiency in operational settings and lays the foundation for a machine learning (ML)–aided decision-support framework (DSF) for energy efficiency optimisation in coal-fired boilers.
在人工神经网络框架内集成热流体原理的锅炉运行预测
由于复杂热流体系统的波动条件,优化锅炉运行具有挑战性。本研究通过开发和验证人工神经网络(ANN)模型,介绍了一种提高燃煤锅炉效率的新方法,该模型提供了统计准确和科学可行的预测。建立了3个多层感知机(MLP)前馈神经网络模型,其中主成分分析(PCA)支持变量选择,拉丁超立方采样(LHS)进行超参数优化。最佳人工神经网络的测试均方根误差(rmse)为:蒸汽流量为2.11 t/h,排气量为2.11 t/h,过热蒸汽温度为4.98°C,蒸汽压力为0.69 bar,效率为0.86 %。效率的平均绝对百分比误差(MAPE)保持在1.25 %以下,偏差限制在±4.25 %。应用了统计和热力学验证,包括预测方差的自举聚合和质量和能量平衡检查。结果表明,96.76 %的样品水质量平衡偏差小于0.01 %。此外,100 %的效率和能源输出预测落在5 %的绝对误差范围内。这项工作的新颖之处在于将人工神经网络预测与热流体验证相结合。从理论上讲,它通过弥合统计准确性和物理可行性之间的差距来推进当前的文献。实际上,它为评估运行设置中的效率提供了可靠的框架,并为用于燃煤锅炉能效优化的机器学习(ML)辅助决策支持框架(DSF)奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Process Control
Journal of Process Control 工程技术-工程:化工
CiteScore
7.00
自引率
11.90%
发文量
159
审稿时长
74 days
期刊介绍: This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others. Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques. Topics covered include: • Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信