Generative transformer-based deep hierarchical VAE model for the automated generation of chemical process topologies

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yeong Woo Son , Ji Hun Pak , Chan Kim, Jong Min Lee
{"title":"Generative transformer-based deep hierarchical VAE model for the automated generation of chemical process topologies","authors":"Yeong Woo Son ,&nbsp;Ji Hun Pak ,&nbsp;Chan Kim,&nbsp;Jong Min Lee","doi":"10.1016/j.compchemeng.2025.109431","DOIUrl":null,"url":null,"abstract":"<div><div>Chemical process synthesis involves two key challenges: defining the process topology and specifying the physicochemical details. To address the first challenge, this work presents a data-driven framework for the automated generation of diverse and structurally valid process topologies. Our approach utilizes a transformer-based generative model to learn the underlying grammar of process structures from a large dataset of designs. By learning a flexible latent representation and enabling constraint-aware generation, our framework rapidly produces a wide range of novel candidate topologies for subsequent, engineering analysis. We compile a database of real-world process flow diagrams (PFDs) and augment it with synthetically generated process topologies using a higher-order Markov model. All flowsheets are encoded as structured text sequences using the simplified flowsheet input-line entry system (SFILES), allowing compatibility with transformer architectures. We train a generative model that integrates a modified transformer architecture with a deep hierarchical variational autoencoder (VAE), and apply a constrained beam search algorithm to ensure syntactic validity and design feasibility. Key contributions include: (1) a transformer-based generation method for latent vector-guided flexible process topology generation; (2) data augmentation using a higher-order Markov model; (3) a SFILES structural validator that checks the grammar and logic of process topologies; (4) a novel model architecture integrating a modified transformer decoder with a hierarchical VAE; and (5) a constrained beam search decoding strategy that enforces design requirements during sequence generation. Our results show that the proposed framework is capable of generating diverse, valid, and feasible topologies, offering a scalable approach to early-stage process development.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"205 ","pages":"Article 109431"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009813542500434X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical process synthesis involves two key challenges: defining the process topology and specifying the physicochemical details. To address the first challenge, this work presents a data-driven framework for the automated generation of diverse and structurally valid process topologies. Our approach utilizes a transformer-based generative model to learn the underlying grammar of process structures from a large dataset of designs. By learning a flexible latent representation and enabling constraint-aware generation, our framework rapidly produces a wide range of novel candidate topologies for subsequent, engineering analysis. We compile a database of real-world process flow diagrams (PFDs) and augment it with synthetically generated process topologies using a higher-order Markov model. All flowsheets are encoded as structured text sequences using the simplified flowsheet input-line entry system (SFILES), allowing compatibility with transformer architectures. We train a generative model that integrates a modified transformer architecture with a deep hierarchical variational autoencoder (VAE), and apply a constrained beam search algorithm to ensure syntactic validity and design feasibility. Key contributions include: (1) a transformer-based generation method for latent vector-guided flexible process topology generation; (2) data augmentation using a higher-order Markov model; (3) a SFILES structural validator that checks the grammar and logic of process topologies; (4) a novel model architecture integrating a modified transformer decoder with a hierarchical VAE; and (5) a constrained beam search decoding strategy that enforces design requirements during sequence generation. Our results show that the proposed framework is capable of generating diverse, valid, and feasible topologies, offering a scalable approach to early-stage process development.
基于生成式变压器的化工过程拓扑自动生成深层分层VAE模型
化学过程合成涉及两个关键挑战:定义过程拓扑和指定物理化学细节。为了解决第一个挑战,这项工作提出了一个数据驱动的框架,用于自动生成各种结构有效的过程拓扑。我们的方法利用基于转换器的生成模型从大型设计数据集中学习过程结构的底层语法。通过学习灵活的潜在表示和启用约束感知生成,我们的框架迅速为后续的工程分析生成广泛的新候选拓扑。我们编译了一个真实世界过程流程图(pfd)的数据库,并使用高阶马尔可夫模型对其进行了综合生成的过程拓扑的扩充。所有流程都使用简化的流程输入行输入系统(SFILES)编码为结构化文本序列,从而允许与变压器体系结构兼容。我们训练了一个集成了改进的变压器架构和深度分层变分自编码器(VAE)的生成模型,并应用约束束搜索算法来确保语法的有效性和设计的可行性。主要贡献包括:(1)基于变压器的潜在矢量导向柔性过程拓扑生成方法;(2)利用高阶马尔可夫模型增强数据;(3) SFILES结构验证器,用于检查流程拓扑的语法和逻辑;(4)将改进的变压器解码器与分层VAE集成在一起的新型模型体系结构;(5)约束波束搜索解码策略,在序列生成过程中强制执行设计要求。我们的结果表明,所提出的框架能够生成不同的、有效的和可行的拓扑,为早期流程开发提供了一种可扩展的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信