Multi-stage model predictive control for slug flow crystallizers using uncertainty-aware surrogate models

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Collin R. Johnson , Stijn de Vries , Kerstin Wohlgemuth , Sergio Lucia
{"title":"Multi-stage model predictive control for slug flow crystallizers using uncertainty-aware surrogate models","authors":"Collin R. Johnson ,&nbsp;Stijn de Vries ,&nbsp;Kerstin Wohlgemuth ,&nbsp;Sergio Lucia","doi":"10.1016/j.compchemeng.2025.109456","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel dynamic model for slug flow crystallizers that addresses the challenges of spatial distribution without backmixing or diffusion, potentially enabling advanced model-based control. The developed model can accurately describe the main characteristics of slug flow crystallizers, including slug-to-slug variability but leads to a high computational complexity due to the consideration of partial differential equations and population balance equations. For that reason, the model cannot be directly used for process optimization and control. To solve this challenge, we propose two different approaches, conformalized quantile regression and Bayesian last layer neural networks, to develop surrogate models with uncertainty quantification capabilities. These surrogates output a prediction of the system states together with an uncertainty of these predictions to account for process variability and model uncertainty. We use the uncertainty of the predictions to formulate a robust model predictive control approach, enabling robust real-time advanced control of a slug flow crystallizer.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"205 ","pages":"Article 109456"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425004594","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel dynamic model for slug flow crystallizers that addresses the challenges of spatial distribution without backmixing or diffusion, potentially enabling advanced model-based control. The developed model can accurately describe the main characteristics of slug flow crystallizers, including slug-to-slug variability but leads to a high computational complexity due to the consideration of partial differential equations and population balance equations. For that reason, the model cannot be directly used for process optimization and control. To solve this challenge, we propose two different approaches, conformalized quantile regression and Bayesian last layer neural networks, to develop surrogate models with uncertainty quantification capabilities. These surrogates output a prediction of the system states together with an uncertainty of these predictions to account for process variability and model uncertainty. We use the uncertainty of the predictions to formulate a robust model predictive control approach, enabling robust real-time advanced control of a slug flow crystallizer.
基于不确定性感知代理模型的段塞流结晶器多级模型预测控制
本文提出了一种新的段塞流结晶器动态模型,该模型解决了空间分布的挑战,没有回混或扩散,有可能实现先进的基于模型的控制。所建立的模型可以准确地描述段塞流结晶器的主要特性,包括段塞间的可变性,但由于考虑了偏微分方程和种群平衡方程,计算复杂度较高。因此,该模型不能直接用于过程优化和控制。为了解决这一挑战,我们提出了两种不同的方法,共形分位数回归和贝叶斯最后一层神经网络,以开发具有不确定性量化能力的代理模型。这些代理输出系统状态的预测以及这些预测的不确定性,以解释过程可变性和模型不确定性。我们利用预测的不确定性制定了一种鲁棒模型预测控制方法,实现了对段塞流结晶器的鲁棒实时高级控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信