Advancements in Sinkhole Remediation: Field data-driven Sinkhole grout volume prediction model via machine learning-based regression Analysis

IF 4.2
Bubryur Kim , Yuvaraj Natarajan , K.R. Sri Preethaa , V. Danushkumar , Ryan Shamet , Jiannan Chen , Rui Xie , Timothy Copeland , Boo Hyun Nam , Jinwoo An
{"title":"Advancements in Sinkhole Remediation: Field data-driven Sinkhole grout volume prediction model via machine learning-based regression Analysis","authors":"Bubryur Kim ,&nbsp;Yuvaraj Natarajan ,&nbsp;K.R. Sri Preethaa ,&nbsp;V. Danushkumar ,&nbsp;Ryan Shamet ,&nbsp;Jiannan Chen ,&nbsp;Rui Xie ,&nbsp;Timothy Copeland ,&nbsp;Boo Hyun Nam ,&nbsp;Jinwoo An","doi":"10.1016/j.aiig.2025.100159","DOIUrl":null,"url":null,"abstract":"<div><div>Sinkhole formation poses a significant geohazard in karst regions, where unpredictable subsurface erosion often necessitates costly grouting for stabilization. Accurate estimation of grout volume remains a persistent challenge due to spatial variability, site-specific conditions, and the limitations of traditional empirical methods. This study introduces a novel machine learning-based regression model for grout volume prediction that integrates cone penetration test (CPT)-derived Sinkhole Resistance Ratio (SRR) values, spatial correlations between CPT and grouting points (GPs), and field-recorded grout volumes from six sinkhole sites in Florida. Three data transformation methods, the Proximal Allocation Method (PAM), the Equitable Distribution Method (EDM), and the Threshold-based Equitable Distribution Method (TEDM), were applied to distribute grout influence across CPTs, with TEDM demonstrating superior predictive performance. Synthetic data augmentation using spline methodology further improved model robustness. A high-degree polynomial regression model, optimized with ridge regularization, achieved high accuracy (R<sup>2</sup> = 0.95; PEV = 0.94) and significantly outperformed existing linear and logarithmic models. Results confirm that lower SRR values correlate with higher grout demand, and the proposed model reliably captures these nonlinear relationships. This research advances sinkhole remediation practice by providing a data-driven, accurate, and generalizable framework for grout volume estimation, enabling more efficient resource allocation and improved project outcomes.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 2","pages":"Article 100159"},"PeriodicalIF":4.2000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544125000553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sinkhole formation poses a significant geohazard in karst regions, where unpredictable subsurface erosion often necessitates costly grouting for stabilization. Accurate estimation of grout volume remains a persistent challenge due to spatial variability, site-specific conditions, and the limitations of traditional empirical methods. This study introduces a novel machine learning-based regression model for grout volume prediction that integrates cone penetration test (CPT)-derived Sinkhole Resistance Ratio (SRR) values, spatial correlations between CPT and grouting points (GPs), and field-recorded grout volumes from six sinkhole sites in Florida. Three data transformation methods, the Proximal Allocation Method (PAM), the Equitable Distribution Method (EDM), and the Threshold-based Equitable Distribution Method (TEDM), were applied to distribute grout influence across CPTs, with TEDM demonstrating superior predictive performance. Synthetic data augmentation using spline methodology further improved model robustness. A high-degree polynomial regression model, optimized with ridge regularization, achieved high accuracy (R2 = 0.95; PEV = 0.94) and significantly outperformed existing linear and logarithmic models. Results confirm that lower SRR values correlate with higher grout demand, and the proposed model reliably captures these nonlinear relationships. This research advances sinkhole remediation practice by providing a data-driven, accurate, and generalizable framework for grout volume estimation, enabling more efficient resource allocation and improved project outcomes.
天坑修复的进展:基于机器学习的回归分析的现场数据驱动的天坑灌浆量预测模型
在喀斯特地区,天坑的形成造成了严重的地质灾害,在那里,不可预测的地下侵蚀往往需要昂贵的灌浆来稳定。由于空间变异性、场地特定条件和传统经验方法的局限性,准确估计浆液体积仍然是一个持续的挑战。该研究引入了一种新的基于机器学习的浆液体积预测回归模型,该模型集成了锥贯入试验(CPT)得出的天坑阻力比(SRR)值、CPT与注浆点(GPs)之间的空间相关性以及佛罗里达州六个天坑现场记录的浆液体积。采用近端分配法(PAM)、公平分配法(EDM)和基于阈值的公平分配法(TEDM)三种数据转换方法对不同cpt的灌浆影响进行了分布,TEDM显示出较好的预测性能。采用样条法对合成数据进行增强,进一步提高了模型的鲁棒性。采用脊正则化优化的高次多项式回归模型获得了较高的精度(R2 = 0.95; PEV = 0.94),显著优于现有的线性和对数模型。结果证实,较低的SRR值与较高的浆液需求相关,并且所提出的模型可靠地捕获了这些非线性关系。本研究通过提供一个数据驱动的、准确的、可推广的灌浆量估算框架来推进天坑修复实践,从而实现更有效的资源分配和改善项目成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信