Andrea Burattin , Barbara Re , Lorenzo Rossi , Francesco Tiezzi
{"title":"A framework for purpose-guided event logs generation","authors":"Andrea Burattin , Barbara Re , Lorenzo Rossi , Francesco Tiezzi","doi":"10.1016/j.datak.2025.102526","DOIUrl":null,"url":null,"abstract":"<div><div>Process mining is a prominent discipline in business process management. It collects a variety of techniques for gathering information from event logs, each fulfilling a different mining purpose. Event logs are always necessary for assessing and validating mining techniques in relation to specific purposes. Unfortunately, event logs are hard to find and usually contain noise that can influence the validity of the results of a mining technique. In this paper, we propose a framework, named <span>purple</span>, for generating, through business model simulation, event logs tailored for different mining purposes, i.e., discovery, what-if analysis, and conformance checking. It supports the simulation of models specified in different languages, by projecting their execution onto a common behavioral model, i.e., a labeled transition system. We present eleven instantiations of the framework implemented in a software tool by-product of this paper. The framework is validated against reference log generators through experiments on the purposes presented in the paper.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"161 ","pages":"Article 102526"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X25001211","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Process mining is a prominent discipline in business process management. It collects a variety of techniques for gathering information from event logs, each fulfilling a different mining purpose. Event logs are always necessary for assessing and validating mining techniques in relation to specific purposes. Unfortunately, event logs are hard to find and usually contain noise that can influence the validity of the results of a mining technique. In this paper, we propose a framework, named purple, for generating, through business model simulation, event logs tailored for different mining purposes, i.e., discovery, what-if analysis, and conformance checking. It supports the simulation of models specified in different languages, by projecting their execution onto a common behavioral model, i.e., a labeled transition system. We present eleven instantiations of the framework implemented in a software tool by-product of this paper. The framework is validated against reference log generators through experiments on the purposes presented in the paper.
期刊介绍:
Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.