dpdata: A Scalable Python Toolkit for Atomistic Machine Learning Data Sets.

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL
Jinzhe Zeng,Xingliang Peng,Yong-Bin Zhuang,Haidi Wang,Fengbo Yuan,Duo Zhang,Renxi Liu,Yingze Wang,Ping Tuo,Yuzhi Zhang,Yixiao Chen,Yifan Li,Cao Thang Nguyen,Jiameng Huang,Anyang Peng,Marián Rynik,Wei-Hong Xu,Zezhong Zhang,Xu-Yuan Zhou,Tao Chen,Jiahao Fan,Wanrun Jiang,Bowen Li,Denan Li,Haoxi Li,Wenshuo Liang,Ruihao Liao,Liping Liu,Chenxing Luo,Logan Ward,Kaiwei Wan,Junjie Wang,Pan Xiang,Chengqian Zhang,Jinchao Zhang,Rui Zhou,Jia-Xin Zhu,Linfeng Zhang,Han Wang
{"title":"dpdata: A Scalable Python Toolkit for Atomistic Machine Learning Data Sets.","authors":"Jinzhe Zeng,Xingliang Peng,Yong-Bin Zhuang,Haidi Wang,Fengbo Yuan,Duo Zhang,Renxi Liu,Yingze Wang,Ping Tuo,Yuzhi Zhang,Yixiao Chen,Yifan Li,Cao Thang Nguyen,Jiameng Huang,Anyang Peng,Marián Rynik,Wei-Hong Xu,Zezhong Zhang,Xu-Yuan Zhou,Tao Chen,Jiahao Fan,Wanrun Jiang,Bowen Li,Denan Li,Haoxi Li,Wenshuo Liang,Ruihao Liao,Liping Liu,Chenxing Luo,Logan Ward,Kaiwei Wan,Junjie Wang,Pan Xiang,Chengqian Zhang,Jinchao Zhang,Rui Zhou,Jia-Xin Zhu,Linfeng Zhang,Han Wang","doi":"10.1021/acs.jcim.5c01767","DOIUrl":null,"url":null,"abstract":"Seamless management of atomistic data sets is a critical prerequisite for the successful development and deployment of machine learning potentials (MLPs). Here, we present dpdata, an open-source Python library designed to streamline every aspect of MLP data handling. Built upon a flexible, plugin-based architecture, dpdata supports reading, writing, and converting between a broad range of file formats─from popular quantum-chemistry packages and molecular-dynamics engines to specialized MLP frameworks. Users may define custom data types, formats, drivers, and minimizers, enabling effortless extension to emerging software. Key utilities include automated train-test splitting, coordinate perturbation for active learning, outlier-energy removal, Δ-learning data set generation, error-metric computation, and unit conversion. Through efficient NumPy-backed storage and system-level operations, dpdata achieves significant memory saving and inference speedups over configuration-by-configuration tools such as ASE. We also highlight practical impact, with dpdata used across published studies, for format conversion, data storage, coordinate perturbation, and utilization in other projects for data processing.","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"101 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c01767","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Seamless management of atomistic data sets is a critical prerequisite for the successful development and deployment of machine learning potentials (MLPs). Here, we present dpdata, an open-source Python library designed to streamline every aspect of MLP data handling. Built upon a flexible, plugin-based architecture, dpdata supports reading, writing, and converting between a broad range of file formats─from popular quantum-chemistry packages and molecular-dynamics engines to specialized MLP frameworks. Users may define custom data types, formats, drivers, and minimizers, enabling effortless extension to emerging software. Key utilities include automated train-test splitting, coordinate perturbation for active learning, outlier-energy removal, Δ-learning data set generation, error-metric computation, and unit conversion. Through efficient NumPy-backed storage and system-level operations, dpdata achieves significant memory saving and inference speedups over configuration-by-configuration tools such as ASE. We also highlight practical impact, with dpdata used across published studies, for format conversion, data storage, coordinate perturbation, and utilization in other projects for data processing.
dpdata:用于原子机器学习数据集的可扩展Python工具包。
原子数据集的无缝管理是成功开发和部署机器学习潜力(mlp)的关键先决条件。在这里,我们介绍dpdata,这是一个开源Python库,旨在简化MLP数据处理的各个方面。dpdata建立在一个灵活的、基于插件的架构之上,支持在各种文件格式之间进行读写和转换,从流行的量子化学包和分子动力学引擎到专门的MLP框架。用户可以定义自定义数据类型、格式、驱动程序和最小化器,从而实现对新兴软件的轻松扩展。关键的实用程序包括自动训练测试分割、主动学习的坐标扰动、异常值能量去除、Δ-learning数据集生成、误差度量计算和单位转换。通过高效的numpy支持的存储和系统级操作,dpdata实现了显著的内存节省和推理速度,超过了按配置的工具(如ASE)。我们还强调了实际影响,在已发表的研究中使用dpdata,用于格式转换、数据存储、坐标扰动以及在其他项目中用于数据处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信