Aptamers Meet Structural Bioinformatics, Computational Chemistry, and Artificial Intelligence

IF 27 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Gabriela da Rosa, Mauro de Castro, Víctor Miguel García Velásquez, Santiago Pintos, Jimena Benedetto, Leandro Grille, Sofia Valla, Luis Marat Alvarez Salas, Victoria Calzada, Pablo D. Dans
{"title":"Aptamers Meet Structural Bioinformatics, Computational Chemistry, and Artificial Intelligence","authors":"Gabriela da Rosa,&nbsp;Mauro de Castro,&nbsp;Víctor Miguel García Velásquez,&nbsp;Santiago Pintos,&nbsp;Jimena Benedetto,&nbsp;Leandro Grille,&nbsp;Sofia Valla,&nbsp;Luis Marat Alvarez Salas,&nbsp;Victoria Calzada,&nbsp;Pablo D. Dans","doi":"10.1002/wcms.70050","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Aptamers—short single-stranded DNA or RNA—are the latest biomolecules to fall within reach of powerful structure-prediction pipelines that blend bioinformatics, computational chemistry, and artificial intelligence. These tools now enable high-throughput exploration of aptamer conformational landscapes, a prerequisite for rational design and optimization of their exceptional target affinity and specificity. Next-generation sequencing has democratized library analysis, allowing any laboratory to handle millions of variants. Hybrid workflows currently offer the most reliable secondary and tertiary structure models, and explicit treatment of conformational flexibility is proving indispensable for mapping binding-competent states. Yet every predictive tier—from classic free-energy minimization to deep learning—still underrepresents chemically modified nucleotides, the very substitutions that grant therapeutic aptamers nuclease resistance and pharmacokinetic longevity. Capturing the structural and dynamical consequences of these modifications remains the key unsolved problem. Progress, therefore, hinges on two fronts: richer parameterization and training data that encompass modified bases, and tighter coupling of <i>in silico</i> screens with biophysical and structural validation. Bridging these gaps will convert the current wave of computational advances into clinically relevant aptamer-based drugs ready to be delivered to the patients.</p>\n <p>This article is categorized under:\n\n </p><ul>\n \n <li>Structure and Mechanism &gt; Molecular Structures</li>\n \n <li>Data Science &gt; Computer Algorithms and Programming</li>\n \n <li>Data Science &gt; Artificial Intelligence/Machine Learning</li>\n </ul>\n </div>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 5","pages":""},"PeriodicalIF":27.0000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://wires.onlinelibrary.wiley.com/doi/10.1002/wcms.70050","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aptamers—short single-stranded DNA or RNA—are the latest biomolecules to fall within reach of powerful structure-prediction pipelines that blend bioinformatics, computational chemistry, and artificial intelligence. These tools now enable high-throughput exploration of aptamer conformational landscapes, a prerequisite for rational design and optimization of their exceptional target affinity and specificity. Next-generation sequencing has democratized library analysis, allowing any laboratory to handle millions of variants. Hybrid workflows currently offer the most reliable secondary and tertiary structure models, and explicit treatment of conformational flexibility is proving indispensable for mapping binding-competent states. Yet every predictive tier—from classic free-energy minimization to deep learning—still underrepresents chemically modified nucleotides, the very substitutions that grant therapeutic aptamers nuclease resistance and pharmacokinetic longevity. Capturing the structural and dynamical consequences of these modifications remains the key unsolved problem. Progress, therefore, hinges on two fronts: richer parameterization and training data that encompass modified bases, and tighter coupling of in silico screens with biophysical and structural validation. Bridging these gaps will convert the current wave of computational advances into clinically relevant aptamer-based drugs ready to be delivered to the patients.

This article is categorized under:

  • Structure and Mechanism > Molecular Structures
  • Data Science > Computer Algorithms and Programming
  • Data Science > Artificial Intelligence/Machine Learning

Abstract Image

适体满足结构生物信息学,计算化学和人工智能
适配体是一种短单链DNA或rna,是融合了生物信息学、计算化学和人工智能的强大结构预测管道所能及的最新生物分子。这些工具现在可以实现对适体构象景观的高通量探索,这是合理设计和优化其特殊目标亲和力和特异性的先决条件。下一代测序使文库分析大众化,允许任何实验室处理数以百万计的变异。混合工作流程目前提供了最可靠的二级和三级结构模型,并且对构象灵活性的明确处理对于映射绑定胜任状态是必不可少的。然而,每一个预测层——从经典的自由能最小化到深度学习——仍然不足以代表化学修饰的核苷酸,而正是这种替代赋予了治疗性适体核酸酶抗性和药代动力学寿命。捕获这些变化的结构和动态后果仍然是关键的未解决的问题。因此,进展取决于两个方面:更丰富的参数化和包含修改碱基的训练数据,以及硅屏幕与生物物理和结构验证的更紧密耦合。弥合这些差距将使当前的计算进步浪潮转化为临床相关的基于适配体的药物,准备交付给患者。本文分类如下:结构与机制;分子结构数据科学;计算机算法与编程;数据科学;人工智能/机器学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信