Synergistic Thermal Conductivity Enhancement in Geopolymer–Graphene Aerogel Composites Through 3D Structuring and Gelation Kinetics

IF 12
Wentao Sheng, Lei Chen, Fan Zhang, Hailong Hu
{"title":"Synergistic Thermal Conductivity Enhancement in Geopolymer–Graphene Aerogel Composites Through 3D Structuring and Gelation Kinetics","authors":"Wentao Sheng,&nbsp;Lei Chen,&nbsp;Fan Zhang,&nbsp;Hailong Hu","doi":"10.1002/cnl2.70067","DOIUrl":null,"url":null,"abstract":"<p>To overcome the inherent drawback of low thermal conductivity (0.3 W/m·K) in conventional thermoplastic polymers, this work reports a scalable synthesis of cost-effective, thermally stable geopolymers using waste fly ash (FA) as a precursor material. By synergistically tailoring the Si/Al ratio and incorporating graphene oxide, a three-dimensional percolative thermal conductive network is engineered to dramatically enhance the thermal conductivity of geopolymer–graphene aerogel composites. Experimental results show that optimizing the Si/Al ratio effectively improves the matrix performance. With the optimal Si/Al ratios of 1.35 and 1.50, the thermal conductivities of the geopolymer reach up to 1.03 and 1.14 W/m·K, respectively, representing a nearly 245% increase over conventional polymers. Notably, the further introduction of ultra-low content of thermal conductive graphene aerogel filler (0.34 wt%) with a regulated Si/Al ratio of 1.64 results in a 34.2% increase in the thermal conductivity of the composite, achieving an exceptional specific improvement (thermal conductivity improvement/filler content) of 100.7%. Moreover, these composites maintain 75.5% of their initial conductivity at high temperature (100°C), demonstrating robust thermal stability. This breakthrough enables efficient thermal management for miniaturized electronic systems using ultra-low loading of high-performance fillers.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 6","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70067","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To overcome the inherent drawback of low thermal conductivity (0.3 W/m·K) in conventional thermoplastic polymers, this work reports a scalable synthesis of cost-effective, thermally stable geopolymers using waste fly ash (FA) as a precursor material. By synergistically tailoring the Si/Al ratio and incorporating graphene oxide, a three-dimensional percolative thermal conductive network is engineered to dramatically enhance the thermal conductivity of geopolymer–graphene aerogel composites. Experimental results show that optimizing the Si/Al ratio effectively improves the matrix performance. With the optimal Si/Al ratios of 1.35 and 1.50, the thermal conductivities of the geopolymer reach up to 1.03 and 1.14 W/m·K, respectively, representing a nearly 245% increase over conventional polymers. Notably, the further introduction of ultra-low content of thermal conductive graphene aerogel filler (0.34 wt%) with a regulated Si/Al ratio of 1.64 results in a 34.2% increase in the thermal conductivity of the composite, achieving an exceptional specific improvement (thermal conductivity improvement/filler content) of 100.7%. Moreover, these composites maintain 75.5% of their initial conductivity at high temperature (100°C), demonstrating robust thermal stability. This breakthrough enables efficient thermal management for miniaturized electronic systems using ultra-low loading of high-performance fillers.

Abstract Image

通过三维结构和凝胶动力学增强地聚合物-石墨烯气凝胶复合材料的协同导热性
为了克服传统热塑性聚合物导热系数低(0.3 W/m·K)的固有缺点,本研究报告了一种使用废粉煤灰(FA)作为前驱体材料的可扩展合成成本效益高、热稳定的地聚合物。通过协同调整Si/Al比并加入氧化石墨烯,设计了三维渗透导热网络,以显着提高地聚合物-石墨烯气凝胶复合材料的导热性。实验结果表明,优化Si/Al比能有效提高基体性能。当硅铝比为1.35和1.50时,该地聚合物的导热系数分别达到1.03和1.14 W/m·K,比传统聚合物提高了近245%。值得注意的是,进一步引入超低含量的导热石墨烯气凝胶填料(0.34 wt%),调节Si/Al比为1.64,使复合材料的导热系数增加34.2%,实现了100.7%的特殊改善(导热系数改善/填料含量)。此外,这些复合材料在高温(100°C)下保持75.5%的初始电导率,表现出强大的热稳定性。这一突破使得使用超低负荷高性能填料的小型化电子系统实现了高效的热管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信