Helen Hooker, Sarah L. Dance, David C. Mason, John Bevington, Kay Shelton
{"title":"Assimilation of Satellite Flood Likelihood Data Improves Inundation Mapping From a Simulation Library System","authors":"Helen Hooker, Sarah L. Dance, David C. Mason, John Bevington, Kay Shelton","doi":"10.1002/met.70104","DOIUrl":null,"url":null,"abstract":"<p>Mitigating against the impacts of catastrophic flooding requires funding for the communities at risk, ahead of an event. Simulation library flood forecasting systems are being deployed for forecast-based financing (FbF) applications. The FbF trigger is usually automated and relies on the accuracy of the flood inundation forecast, which can lead to missed events that were forecast below the trigger threshold. However, earth observation data from satellite-based synthetic aperture radar (SAR) sensors can reliably detect most large flooding events. A new data assimilation framework is presented to update the flood map selection from a simulation library system using SAR data, taking account of observation uncertainties. The method is tested on flooding in Pakistan, 2022. The Indus River in the Sindh province was not forecast to reach flood levels, which resulted in no selection of the flood maps and no triggering of the FbF scheme. Following observation assimilation, the flood map selection could be triggered in four out of five sub-catchments tested, with the exception occurring in a dense urban area due to the simulation library flood map accuracy here. Thus, the analysis flood map has potential to be used to trigger a secondary finance scheme during a flood event and avoid missed financing opportunities for humanitarian action.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"32 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/met.70104","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://rmets.onlinelibrary.wiley.com/doi/10.1002/met.70104","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mitigating against the impacts of catastrophic flooding requires funding for the communities at risk, ahead of an event. Simulation library flood forecasting systems are being deployed for forecast-based financing (FbF) applications. The FbF trigger is usually automated and relies on the accuracy of the flood inundation forecast, which can lead to missed events that were forecast below the trigger threshold. However, earth observation data from satellite-based synthetic aperture radar (SAR) sensors can reliably detect most large flooding events. A new data assimilation framework is presented to update the flood map selection from a simulation library system using SAR data, taking account of observation uncertainties. The method is tested on flooding in Pakistan, 2022. The Indus River in the Sindh province was not forecast to reach flood levels, which resulted in no selection of the flood maps and no triggering of the FbF scheme. Following observation assimilation, the flood map selection could be triggered in four out of five sub-catchments tested, with the exception occurring in a dense urban area due to the simulation library flood map accuracy here. Thus, the analysis flood map has potential to be used to trigger a secondary finance scheme during a flood event and avoid missed financing opportunities for humanitarian action.
期刊介绍:
The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including:
applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits;
forecasting, warning and service delivery techniques and methods;
weather hazards, their analysis and prediction;
performance, verification and value of numerical models and forecasting services;
practical applications of ocean and climate models;
education and training.