A Generalized Birman–Schwinger Principle and Applications to One-Dimensional Schrödinger Operators with Distributional Potentials

IF 0.7 4区 数学 Q3 MATHEMATICS
Fritz Gesztesy, Roger Nichols
{"title":"A Generalized Birman–Schwinger Principle and Applications to One-Dimensional Schrödinger Operators with Distributional Potentials","authors":"Fritz Gesztesy,&nbsp;Roger Nichols","doi":"10.1134/S1234567825030024","DOIUrl":null,"url":null,"abstract":"<p> Given a self-adjoint operator <span>\\(H_0\\)</span> bounded from below in a complex, separable Hilbert space <span>\\(\\mathcal H\\)</span>, the corresponding scale of spaces <span>\\(\\mathcal H_{+1}(H_0) \\subset \\mathcal H \\subset \\mathcal H_{-1}(H_0)=[\\mathcal H_{+1}(H_0)]^*\\)</span>, and a fixed <span>\\(V\\in \\mathcal B(\\mathcal H_{+1}(H_0),\\mathcal H_{-1}(H_0))\\)</span>, we define the operator-valued map <span>\\(A_V(\\,\\cdot\\,)\\colon \\rho(H_0)\\to \\mathcal B(\\mathcal H)\\)</span> by </p><p> where <span>\\(\\rho(H_0)\\)</span> denotes the resolvent set of <span>\\(H_0\\)</span>. Assuming that <span>\\(A_V(z)\\)</span> is compact for some <span>\\(z=z_0\\in \\rho(H_0)\\)</span> and has norm strictly less than one for some <span>\\(z=E_0\\in (-\\infty,0)\\)</span>, we employ an abstract version of Tiktopoulos’ formula to define an operator <span>\\(H\\)</span> in <span>\\(\\mathcal H\\)</span> that is formally realized as the sum of <span>\\(H_0\\)</span> and <span>\\(V\\)</span>. We then establish a Birman–Schwinger principle for <span>\\(H\\)</span> in which <span>\\(A_V(\\,\\cdot\\,)\\)</span> plays the role of the Birman–Schwinger operator: <span>\\(\\lambda_0\\in \\rho(H_0)\\)</span> is an eigenvalue of <span>\\(H\\)</span> if and only if <span>\\(1\\)</span> is an eigenvalue of <span>\\(A_V(\\lambda_0)\\)</span>. Furthermore, the geometric (but not necessarily the algebraic) multiplicities of <span>\\(\\lambda_0\\)</span> and <span>\\(1\\)</span> as eigenvalues of <span>\\(H\\)</span> and <span>\\(A_V(\\lambda_0)\\)</span>, respectively, coincide. </p><p> As a concrete application, we consider one-dimensional Schrödinger operators with <span>\\(H^{-1}(\\mathbb{R})\\)</span> distributional potentials. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"59 3","pages":"224 - 250"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1234567825030024","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a self-adjoint operator \(H_0\) bounded from below in a complex, separable Hilbert space \(\mathcal H\), the corresponding scale of spaces \(\mathcal H_{+1}(H_0) \subset \mathcal H \subset \mathcal H_{-1}(H_0)=[\mathcal H_{+1}(H_0)]^*\), and a fixed \(V\in \mathcal B(\mathcal H_{+1}(H_0),\mathcal H_{-1}(H_0))\), we define the operator-valued map \(A_V(\,\cdot\,)\colon \rho(H_0)\to \mathcal B(\mathcal H)\) by

where \(\rho(H_0)\) denotes the resolvent set of \(H_0\). Assuming that \(A_V(z)\) is compact for some \(z=z_0\in \rho(H_0)\) and has norm strictly less than one for some \(z=E_0\in (-\infty,0)\), we employ an abstract version of Tiktopoulos’ formula to define an operator \(H\) in \(\mathcal H\) that is formally realized as the sum of \(H_0\) and \(V\). We then establish a Birman–Schwinger principle for \(H\) in which \(A_V(\,\cdot\,)\) plays the role of the Birman–Schwinger operator: \(\lambda_0\in \rho(H_0)\) is an eigenvalue of \(H\) if and only if \(1\) is an eigenvalue of \(A_V(\lambda_0)\). Furthermore, the geometric (but not necessarily the algebraic) multiplicities of \(\lambda_0\) and \(1\) as eigenvalues of \(H\) and \(A_V(\lambda_0)\), respectively, coincide.

As a concrete application, we consider one-dimensional Schrödinger operators with \(H^{-1}(\mathbb{R})\) distributional potentials.

广义Birman-Schwinger原理及其在一维Schrödinger分布势算子中的应用
给定复可分希尔伯特空间\(\mathcal H\)中自下有界的自伴随算子\(H_0\),相应的空间尺度\(\mathcal H_{+1}(H_0) \subset \mathcal H \subset \mathcal H_{-1}(H_0)=[\mathcal H_{+1}(H_0)]^*\)和固定的\(V\in \mathcal B(\mathcal H_{+1}(H_0),\mathcal H_{-1}(H_0))\),我们定义了算子值映射\(A_V(\,\cdot\,)\colon \rho(H_0)\to \mathcal B(\mathcal H)\),其中\(\rho(H_0)\)表示\(H_0\)的解集。假设\(A_V(z)\)对于某些\(z=z_0\in \rho(H_0)\)是紧的,并且对于某些\(z=E_0\in (-\infty,0)\)具有严格小于1的模数,我们使用Tiktopoulos公式的抽象版本来定义\(\mathcal H\)中的运算符\(H\),该运算符正式实现为\(H_0\)和\(V\)的和。然后,我们建立了\(H\)的Birman-Schwinger原理,其中\(A_V(\,\cdot\,)\)扮演Birman-Schwinger算子的角色:\(\lambda_0\in \rho(H_0)\)是\(H\)的特征值,当且仅当\(1\)是\(A_V(\lambda_0)\)的特征值。此外,分别作为\(H\)和\(A_V(\lambda_0)\)的特征值的\(\lambda_0\)和\(1\)的几何(但不一定是代数)多重性是一致的。作为具体应用,我们考虑具有\(H^{-1}(\mathbb{R})\)分布势的一维Schrödinger算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信