Achieving Record-Breaking Urea Synthesis on Crystalline–Amorphous Hybrid via Electrochemical-Chemical Looping

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhong Cheng, Xiaodeng Wang, Dafeng Yan, Xupeng Qin, Dawei Chen, Chu Zhang, Yujie Wang, Yansong Zhou, Chade Lv, Peilian Hou, Kefan Zhang, Peng Jin, Yangyang Zhou, Qinghua Liu, Kaizhi Gu, Xiaoxiao Wei, Chen Chen, Shuangyin Wang
{"title":"Achieving Record-Breaking Urea Synthesis on Crystalline–Amorphous Hybrid via Electrochemical-Chemical Looping","authors":"Zhong Cheng, Xiaodeng Wang, Dafeng Yan, Xupeng Qin, Dawei Chen, Chu Zhang, Yujie Wang, Yansong Zhou, Chade Lv, Peilian Hou, Kefan Zhang, Peng Jin, Yangyang Zhou, Qinghua Liu, Kaizhi Gu, Xiaoxiao Wei, Chen Chen, Shuangyin Wang","doi":"10.1021/jacs.5c13721","DOIUrl":null,"url":null,"abstract":"Electrocatalytic C–N coupling of nitrate and CO<sub>2</sub> represents a paradigm shift in sustainable urea synthesis. We demonstrate that amorphous CuO<sub><i>x</i></sub>-coated crystalline Cu nanowires achieve a record-breaking urea yield rate of 0.89 mol h<sup>–1</sup> g<sup>–1</sup> via novel electrochemical-chemical looping. Mechanistic investigations reveal a three-step catalytic cycle: (i) electro-reductive generation of Cu<sup>0</sup> and oxygen vacancies (O<sub>v</sub>); (ii) O<sub>v</sub>-mediated nitrate activation via oxygen atom insertion, spontaneously yielding nitrogen-bonded nitrite (*NO<sub>2</sub>) while oxidizing Cu<sup>0</sup> to catalytically active Cu<sup>+</sup>; and (iii) Cu<sup>+</sup>-catalyzing C–N coupling between *NO<sub>2</sub> and CO<sub>2</sub> to form urea. This pathway circumvents conventional rate-limiting nitrate reduction step, reducing the electron transfer requirement from 16e<sup>–</sup> to 12e<sup>–</sup> for urea synthesis. Notably, direct nitrite utilization fails to generate Cu<sup>+</sup> or nitrogen-bonded intermediates, instead forming oxygen-bonded species with markedly reduced C–N coupling activity–a finding that overturns conventional understanding. Our work establishes new fundamental principles for efficient urea synthesis and provides insights into catalyst design and green chemistry.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"109 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c13721","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic C–N coupling of nitrate and CO2 represents a paradigm shift in sustainable urea synthesis. We demonstrate that amorphous CuOx-coated crystalline Cu nanowires achieve a record-breaking urea yield rate of 0.89 mol h–1 g–1 via novel electrochemical-chemical looping. Mechanistic investigations reveal a three-step catalytic cycle: (i) electro-reductive generation of Cu0 and oxygen vacancies (Ov); (ii) Ov-mediated nitrate activation via oxygen atom insertion, spontaneously yielding nitrogen-bonded nitrite (*NO2) while oxidizing Cu0 to catalytically active Cu+; and (iii) Cu+-catalyzing C–N coupling between *NO2 and CO2 to form urea. This pathway circumvents conventional rate-limiting nitrate reduction step, reducing the electron transfer requirement from 16e to 12e for urea synthesis. Notably, direct nitrite utilization fails to generate Cu+ or nitrogen-bonded intermediates, instead forming oxygen-bonded species with markedly reduced C–N coupling activity–a finding that overturns conventional understanding. Our work establishes new fundamental principles for efficient urea synthesis and provides insights into catalyst design and green chemistry.

Abstract Image

电化学-化学环在结晶-非晶态杂化物上合成破纪录尿素
电催化硝酸盐和CO2的C-N偶联代表了可持续尿素合成的范式转变。我们证明了无定形cuox涂层结晶Cu纳米线通过新的电化学-化学环实现了破纪录的0.89 mol h-1 g-1的尿素产率。机理研究揭示了一个三步催化循环:(i)电还原生成Cu0和氧空位(Ov);(ii) ov通过氧原子插入介导硝酸盐活化,自发生成氮键亚硝酸盐(*NO2),同时将Cu0氧化为具有催化活性的Cu+;(iii) Cu+催化*NO2与CO2之间的C-N偶联生成尿素。该途径绕过了传统的限速硝酸还原步骤,将尿素合成所需的电子转移从16e -减少到12e -。值得注意的是,直接利用亚硝酸盐不能生成Cu+或氮结合的中间体,而是形成氧结合的物质,其C-N偶联活性显著降低——这一发现推翻了传统的认识。我们的工作为高效尿素合成建立了新的基本原理,并为催化剂设计和绿色化学提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信