Olivia J. Graham, Lillian R. Aoki, Brendan Rappazzo, Morgan Eisenlord, C. Drew Harvell
{"title":"Deeper eelgrass meadows are refugia from disease and environmental stressors","authors":"Olivia J. Graham, Lillian R. Aoki, Brendan Rappazzo, Morgan Eisenlord, C. Drew Harvell","doi":"10.3389/fmars.2025.1542488","DOIUrl":null,"url":null,"abstract":"Eelgrass (<jats:italic>Zostera marina</jats:italic>) creates valuable, biodiverse habitats worldwide, but is at risk from combined environmental stressors and disease. We surveyed paired intertidal and subtidal meadows for seagrass wasting disease in the San Juan Islands, WA, USA in summers 2017–2019 to determine how disease varied with depth, temperature, and salinity. We expected reduced disease in deeper meadows with more stable environmental conditions compared to shallower, intertidal meadows with greater thermal and salinity variation. Leveraging a machine-learning algorithm to detect and quantify disease, we measured high disease levels and large changes in meadow densities, particularly in the warmer 2018 summer. Daily mean <jats:italic>in situ</jats:italic> and remote-sensed temperatures captured exposure to warming, though <jats:italic>in situ</jats:italic> temperatures better identified site-specific, seasonal thermal ranges. Subtidal meadows experienced nearly 14°C cooler maximum <jats:italic>in situ</jats:italic> temperatures compared to intertidal meadows. Disease severity was 2.24 times greater in shallow, intertidal meadows compared to deeper, subtidal meadows over the 3-year study and 1.39 times greater during the 2018 warming. Thus, some subtidal meadows can serve as valuable refugia against environmental and pathogenic stressors. Lower eelgrass densities were also associated with increased severity, suggesting a link between disease and meadow patchiness. Temperature and salinity were also key predictors of higher disease: prevalence and maximum sea surface temperatures covaried, as did severity and salinity range, suggesting these environmental factors may differentially influence seagrass wasting disease risk and progression. Our work highlights the value of both subtidal eelgrass meadows and sites with more stable environmental conditions as refugia from multiple stressors, which should be considered as differential drivers of disease.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"47 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1542488","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Eelgrass (Zostera marina) creates valuable, biodiverse habitats worldwide, but is at risk from combined environmental stressors and disease. We surveyed paired intertidal and subtidal meadows for seagrass wasting disease in the San Juan Islands, WA, USA in summers 2017–2019 to determine how disease varied with depth, temperature, and salinity. We expected reduced disease in deeper meadows with more stable environmental conditions compared to shallower, intertidal meadows with greater thermal and salinity variation. Leveraging a machine-learning algorithm to detect and quantify disease, we measured high disease levels and large changes in meadow densities, particularly in the warmer 2018 summer. Daily mean in situ and remote-sensed temperatures captured exposure to warming, though in situ temperatures better identified site-specific, seasonal thermal ranges. Subtidal meadows experienced nearly 14°C cooler maximum in situ temperatures compared to intertidal meadows. Disease severity was 2.24 times greater in shallow, intertidal meadows compared to deeper, subtidal meadows over the 3-year study and 1.39 times greater during the 2018 warming. Thus, some subtidal meadows can serve as valuable refugia against environmental and pathogenic stressors. Lower eelgrass densities were also associated with increased severity, suggesting a link between disease and meadow patchiness. Temperature and salinity were also key predictors of higher disease: prevalence and maximum sea surface temperatures covaried, as did severity and salinity range, suggesting these environmental factors may differentially influence seagrass wasting disease risk and progression. Our work highlights the value of both subtidal eelgrass meadows and sites with more stable environmental conditions as refugia from multiple stressors, which should be considered as differential drivers of disease.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.