Gradient-Aware Adaptive Meta-Prompt Learner for Generalizable Face Forgery Detection

IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Hanqing Liu;Hongxia Wang;Rui Zhang;Yang Zhou;Qiang Zeng
{"title":"Gradient-Aware Adaptive Meta-Prompt Learner for Generalizable Face Forgery Detection","authors":"Hanqing Liu;Hongxia Wang;Rui Zhang;Yang Zhou;Qiang Zeng","doi":"10.1109/TIFS.2025.3622981","DOIUrl":null,"url":null,"abstract":"The misuse of AI-generated techniques in face forgery has raised significant concerns, driving advancements in detection methods. However, existing algorithms struggle with generalization in cross-domain scenarios due to domain shifts, limiting their practical applications. Prompt tuning, which learns soft prompts while freezing the backbone, enables the generalizable Vision-Language Models (VLMs) pre-trained on large-scale datasets to adapt to downstream tasks. Though effective, prompt tuning confronts challenges in face forgery detection, where its performance is sensitive to initialization and may undermine the generalizability of pre-trained VLMs. To address this issue, we propose a novel Gradient-aware Adaptive Meta-Prompt Learner (GAMP-Learner). The core idea is to learn a meta-general gradient from multiple source domains through the Direction-shared Gradient Pruning Module (DGPM) for efficient initialization in the inner-loop, while addressing gradient conflicts via the Adaptive Gradient Calibration Module (AdaGCM) to enhance generalization in the outer-loop. Notably, our GAMP-Learner can be seamlessly integrated into any prompt-based fine-tuning VLM in a model-agnostic way. Additionally, to capture fine-grained forgery clues, we design a Multi-Granularity Conditional Prompt Generator (MGCP), which constructs instance-level prompts by incorporating multi-scale content-style feature representations. Simulating practical scenarios, we devise three protocols which evaluate generalization performance trained on multiple source domains. Extensive experiments demonstrate that the proposed framework achieves competitive cross-domain detection performance compared to state-of-the-art methods.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"11208-11222"},"PeriodicalIF":8.0000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11206424/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The misuse of AI-generated techniques in face forgery has raised significant concerns, driving advancements in detection methods. However, existing algorithms struggle with generalization in cross-domain scenarios due to domain shifts, limiting their practical applications. Prompt tuning, which learns soft prompts while freezing the backbone, enables the generalizable Vision-Language Models (VLMs) pre-trained on large-scale datasets to adapt to downstream tasks. Though effective, prompt tuning confronts challenges in face forgery detection, where its performance is sensitive to initialization and may undermine the generalizability of pre-trained VLMs. To address this issue, we propose a novel Gradient-aware Adaptive Meta-Prompt Learner (GAMP-Learner). The core idea is to learn a meta-general gradient from multiple source domains through the Direction-shared Gradient Pruning Module (DGPM) for efficient initialization in the inner-loop, while addressing gradient conflicts via the Adaptive Gradient Calibration Module (AdaGCM) to enhance generalization in the outer-loop. Notably, our GAMP-Learner can be seamlessly integrated into any prompt-based fine-tuning VLM in a model-agnostic way. Additionally, to capture fine-grained forgery clues, we design a Multi-Granularity Conditional Prompt Generator (MGCP), which constructs instance-level prompts by incorporating multi-scale content-style feature representations. Simulating practical scenarios, we devise three protocols which evaluate generalization performance trained on multiple source domains. Extensive experiments demonstrate that the proposed framework achieves competitive cross-domain detection performance compared to state-of-the-art methods.
基于梯度感知的自适应元提示学习器的人脸伪造检测
在人脸伪造中滥用人工智能生成的技术引起了极大的关注,推动了检测方法的进步。然而,现有的算法在跨域场景下由于域漂移而难以实现泛化,限制了它们的实际应用。即时调整,在冻结主干的同时学习软提示,使在大规模数据集上预训练的通用视觉语言模型(VLMs)能够适应下游任务。快速调优虽然有效,但在人脸伪造检测中面临挑战,其性能对初始化很敏感,并且可能破坏预训练vlm的泛化性。为了解决这个问题,我们提出了一种新的梯度感知自适应元提示学习器(GAMP-Learner)。其核心思想是通过方向共享梯度修剪模块(Direction-shared gradient Pruning Module, DGPM)从多个源域学习元一般梯度,实现内环的高效初始化,同时通过自适应梯度校准模块(Adaptive gradient Calibration Module, AdaGCM)解决梯度冲突,增强外环的泛化能力。值得注意的是,我们的GAMP-Learner可以以模型不可知的方式无缝集成到任何基于提示的微调VLM中。此外,为了捕获细粒度的伪造线索,我们设计了一个多粒度条件提示生成器(MGCP),它通过结合多尺度内容风格的特征表示来构建实例级提示。为了模拟实际场景,我们设计了三种协议来评估在多源域上训练的泛化性能。大量的实验表明,与最先进的方法相比,所提出的框架实现了具有竞争力的跨域检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信