{"title":"A Priori and A Posteriori Error Identities for the Scalar Signorini Problem","authors":"Sören Bartels, Thirupathi Gudi, Alex Kaltenbach","doi":"10.1137/24m1677691","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2155-2186, October 2025. <br/> Abstract. In this paper, on the basis of a (Fenchel) duality theory on the continuous level, we derive an a posteriori error identity for arbitrary conforming approximations of the primal formulation and the dual formulation of the scalar Signorini problem. In addition, on the basis of a (Fenchel) duality theory on the discrete level, we derive an a priori error identity that applies to the approximation of the primal formulation using the Crouzeix–Raviart element and to the approximation of the dual formulation using the Raviart–Thomas element, and leads to quasi-optimal error decay rates without imposing additional assumptions on the contact set and in arbitrary space dimensions.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"91 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1677691","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 2155-2186, October 2025. Abstract. In this paper, on the basis of a (Fenchel) duality theory on the continuous level, we derive an a posteriori error identity for arbitrary conforming approximations of the primal formulation and the dual formulation of the scalar Signorini problem. In addition, on the basis of a (Fenchel) duality theory on the discrete level, we derive an a priori error identity that applies to the approximation of the primal formulation using the Crouzeix–Raviart element and to the approximation of the dual formulation using the Raviart–Thomas element, and leads to quasi-optimal error decay rates without imposing additional assumptions on the contact set and in arbitrary space dimensions.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.