{"title":"Weighted Brier Score - an Overall Summary Measure for Risk Prediction Models with Clinical Utility Consideration.","authors":"Kehao Zhu, Yingye Zheng, Kwun Chuen Gary Chan","doi":"10.1007/s12561-025-09505-5","DOIUrl":null,"url":null,"abstract":"<p><p>As advancements in novel biomarker-based algorithms and models accelerate their use in disease risk prediction, it is crucial to evaluate these models within the context of their intended clinical application. Prediction models output the absolute risk of disease; subsequently, patient counseling and shared decision-making are based on the estimated individual risk and cost-benefit assessment. The overall impact of the application is referred to as clinical utility, which received significant attention and desire to incorporate into model assessment lately. The classic Brier score is a popular measure of prediction accuracy; however, it is insufficient for effectively assessing clinical utility. To address this limitation, we propose a class of weighted Brier scores that aligns with the decision-theoretic framework of clinical utility. Additionally, we decompose the weighted Brier score into discrimination and calibration components, and we link the weighted Brier score to the <math><mi>H</mi></math> measure, which has been proposed as an alternative to the area under the receiver operating characteristic curve. This theoretical link to the <math><mi>H</mi></math> measure further supports our weighting method and underscores the essential elements of discrimination and calibration in risk prediction evaluation. The practical use of the weighted Brier score as an overall summary is demonstrated using data from a prostate cancer study.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12523994/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-025-09505-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As advancements in novel biomarker-based algorithms and models accelerate their use in disease risk prediction, it is crucial to evaluate these models within the context of their intended clinical application. Prediction models output the absolute risk of disease; subsequently, patient counseling and shared decision-making are based on the estimated individual risk and cost-benefit assessment. The overall impact of the application is referred to as clinical utility, which received significant attention and desire to incorporate into model assessment lately. The classic Brier score is a popular measure of prediction accuracy; however, it is insufficient for effectively assessing clinical utility. To address this limitation, we propose a class of weighted Brier scores that aligns with the decision-theoretic framework of clinical utility. Additionally, we decompose the weighted Brier score into discrimination and calibration components, and we link the weighted Brier score to the measure, which has been proposed as an alternative to the area under the receiver operating characteristic curve. This theoretical link to the measure further supports our weighting method and underscores the essential elements of discrimination and calibration in risk prediction evaluation. The practical use of the weighted Brier score as an overall summary is demonstrated using data from a prostate cancer study.
期刊介绍:
Statistics in Biosciences (SIBS) is published three times a year in print and electronic form. It aims at development and application of statistical methods and their interface with other quantitative methods, such as computational and mathematical methods, in biological and life science, health science, and biopharmaceutical and biotechnological science.
SIBS publishes scientific papers and review articles in four sections, with the first two sections as the primary sections. Original Articles publish novel statistical and quantitative methods in biosciences. The Bioscience Case Studies and Practice Articles publish papers that advance statistical practice in biosciences, such as case studies, innovative applications of existing methods that further understanding of subject-matter science, evaluation of existing methods and data sources. Review Articles publish papers that review an area of statistical and quantitative methodology, software, and data sources in biosciences. Commentaries provide perspectives of research topics or policy issues that are of current quantitative interest in biosciences, reactions to an article published in the journal, and scholarly essays. Substantive science is essential in motivating and demonstrating the methodological development and use for an article to be acceptable. Articles published in SIBS share the goal of promoting evidence-based real world practice and policy making through effective and timely interaction and communication of statisticians and quantitative researchers with subject-matter scientists in biosciences.