Hong-Mei Gan, Cui-Ju Liu, Rong-Juan Jiang, Zhi-Yong Zhang, Bo Qian
{"title":"Lipidomic reveals potential mediators of associations between lead exposure and Alzheimer's disease.","authors":"Hong-Mei Gan, Cui-Ju Liu, Rong-Juan Jiang, Zhi-Yong Zhang, Bo Qian","doi":"10.1080/15376516.2025.2576266","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies have identified associations between lead (Pb) exposure and the incidence of Alzheimer's disease (AD), yet the underlying mechanisms are still missing. This investigation verified the association between Pb exposure burden and AD risk in a small case-control study. Using a nontargeted quantification lipidomic assay, the role of 3034 lipid metabolites in the associations between Pb exposure and AD risk was also explored. The results showed that serum Pb levels in AD patients were significantly higher than in control individuals. Meanwhile, serum Pb levels were positively associated with an increased risk of AD (OR = 1.10, 95% CI = 1.04-1.15). Lipidomic assay identified that four lipid metabolites, including phosphatidylcholine (PC) (33:2e), diacylglycerol (DG) (19:1e), sphingomyelins (SM) (d38:4), and phosphoserine (PS) (39:1), were significantly altered in the serum of AD patients. Among them, PC(33:2e) and SM(d38:4) were positively correlated with serum Pb levels. Moreover, PC(33:2e) and SM(d38:4) demonstrated mediation contributions of 60.49% and 20.38%, respectively, in the association between Pb exposure and AD incidence. Network toxicology suggests that Pb exposure may affect lipid metabolic processes in AD by modulating the activation of the MAPK, PI3K-Akt, AMPK, mTOR, and autophagy pathways. Our findings reveal novel insights into AD pathogenesis, suggesting that lipid metabolites may play a mediating role in the association between Pb exposure burden and AD risk.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"1-14"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2025.2576266","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies have identified associations between lead (Pb) exposure and the incidence of Alzheimer's disease (AD), yet the underlying mechanisms are still missing. This investigation verified the association between Pb exposure burden and AD risk in a small case-control study. Using a nontargeted quantification lipidomic assay, the role of 3034 lipid metabolites in the associations between Pb exposure and AD risk was also explored. The results showed that serum Pb levels in AD patients were significantly higher than in control individuals. Meanwhile, serum Pb levels were positively associated with an increased risk of AD (OR = 1.10, 95% CI = 1.04-1.15). Lipidomic assay identified that four lipid metabolites, including phosphatidylcholine (PC) (33:2e), diacylglycerol (DG) (19:1e), sphingomyelins (SM) (d38:4), and phosphoserine (PS) (39:1), were significantly altered in the serum of AD patients. Among them, PC(33:2e) and SM(d38:4) were positively correlated with serum Pb levels. Moreover, PC(33:2e) and SM(d38:4) demonstrated mediation contributions of 60.49% and 20.38%, respectively, in the association between Pb exposure and AD incidence. Network toxicology suggests that Pb exposure may affect lipid metabolic processes in AD by modulating the activation of the MAPK, PI3K-Akt, AMPK, mTOR, and autophagy pathways. Our findings reveal novel insights into AD pathogenesis, suggesting that lipid metabolites may play a mediating role in the association between Pb exposure burden and AD risk.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment.