Shifting Microglial Phenotypes: Targeting Disease-Associated Microglia in Neurodegeneration.

IF 3.9 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Athira Sasidharan, Yogish Somayaji, Ronald Fernandes
{"title":"Shifting Microglial Phenotypes: Targeting Disease-Associated Microglia in Neurodegeneration.","authors":"Athira Sasidharan, Yogish Somayaji, Ronald Fernandes","doi":"10.1021/acschemneuro.5c00159","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative disorders are marked by the gradual degeneration of neurons and deterioration of cognitive function. One key underlying factor in these diseases is neuroinflammation. An essential component of this process is microglia, which are the innate immune cells that maintain homeostasis in the brain. A common outcome of microglial dysregulation in neurodegenerative diseases is chronic neuroinflammation, which exacerbates neuronal damage and impairs synaptic function. This review focuses on the dual roles that disease-associated microglia (DAMs) play in neural inflammation and neuroprotection as well as their distinct transcriptional profile in neurodegenerative diseases. DAMs engage in phagocytosis to remove debris, in addition to releasing cytokines that promote inflammation. To create an effective medicine, it is imperative to comprehend these dual functions. The roles of DAMs in Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are discussed, along with the mechanisms (such as the TREM2-APOE pathway) causing their activation. This review attempts to highlight the important aspects that could direct future investigations and treatment development by clarifying the interactions between DAMs and neurodegenerative diseases.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00159","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative disorders are marked by the gradual degeneration of neurons and deterioration of cognitive function. One key underlying factor in these diseases is neuroinflammation. An essential component of this process is microglia, which are the innate immune cells that maintain homeostasis in the brain. A common outcome of microglial dysregulation in neurodegenerative diseases is chronic neuroinflammation, which exacerbates neuronal damage and impairs synaptic function. This review focuses on the dual roles that disease-associated microglia (DAMs) play in neural inflammation and neuroprotection as well as their distinct transcriptional profile in neurodegenerative diseases. DAMs engage in phagocytosis to remove debris, in addition to releasing cytokines that promote inflammation. To create an effective medicine, it is imperative to comprehend these dual functions. The roles of DAMs in Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are discussed, along with the mechanisms (such as the TREM2-APOE pathway) causing their activation. This review attempts to highlight the important aspects that could direct future investigations and treatment development by clarifying the interactions between DAMs and neurodegenerative diseases.

转移小胶质细胞表型:在神经变性中靶向疾病相关的小胶质细胞。
神经退行性疾病的特征是神经元的逐渐退化和认知功能的退化。这些疾病的一个关键潜在因素是神经炎症。这个过程的一个重要组成部分是小胶质细胞,它是维持大脑内稳态的先天免疫细胞。神经退行性疾病中小胶质细胞失调的一个常见结果是慢性神经炎症,它加剧了神经元损伤并损害了突触功能。本文综述了疾病相关小胶质细胞(dam)在神经炎症和神经保护中的双重作用,以及它们在神经退行性疾病中的独特转录谱。除了释放促进炎症的细胞因子外,dam还参与吞噬以清除碎片。为了创造一种有效的药物,必须了解这些双重功能。讨论了dam在阿尔茨海默病(AD)、帕金森病(PD)和肌萎缩侧索硬化症(ALS)中的作用,以及引起它们激活的机制(如TREM2-APOE途径)。这篇综述试图通过阐明dam与神经退行性疾病之间的相互作用来强调可以指导未来研究和治疗发展的重要方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信