Athira Sasidharan, Yogish Somayaji, Ronald Fernandes
{"title":"Shifting Microglial Phenotypes: Targeting Disease-Associated Microglia in Neurodegeneration.","authors":"Athira Sasidharan, Yogish Somayaji, Ronald Fernandes","doi":"10.1021/acschemneuro.5c00159","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative disorders are marked by the gradual degeneration of neurons and deterioration of cognitive function. One key underlying factor in these diseases is neuroinflammation. An essential component of this process is microglia, which are the innate immune cells that maintain homeostasis in the brain. A common outcome of microglial dysregulation in neurodegenerative diseases is chronic neuroinflammation, which exacerbates neuronal damage and impairs synaptic function. This review focuses on the dual roles that disease-associated microglia (DAMs) play in neural inflammation and neuroprotection as well as their distinct transcriptional profile in neurodegenerative diseases. DAMs engage in phagocytosis to remove debris, in addition to releasing cytokines that promote inflammation. To create an effective medicine, it is imperative to comprehend these dual functions. The roles of DAMs in Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are discussed, along with the mechanisms (such as the TREM2-APOE pathway) causing their activation. This review attempts to highlight the important aspects that could direct future investigations and treatment development by clarifying the interactions between DAMs and neurodegenerative diseases.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00159","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurodegenerative disorders are marked by the gradual degeneration of neurons and deterioration of cognitive function. One key underlying factor in these diseases is neuroinflammation. An essential component of this process is microglia, which are the innate immune cells that maintain homeostasis in the brain. A common outcome of microglial dysregulation in neurodegenerative diseases is chronic neuroinflammation, which exacerbates neuronal damage and impairs synaptic function. This review focuses on the dual roles that disease-associated microglia (DAMs) play in neural inflammation and neuroprotection as well as their distinct transcriptional profile in neurodegenerative diseases. DAMs engage in phagocytosis to remove debris, in addition to releasing cytokines that promote inflammation. To create an effective medicine, it is imperative to comprehend these dual functions. The roles of DAMs in Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are discussed, along with the mechanisms (such as the TREM2-APOE pathway) causing their activation. This review attempts to highlight the important aspects that could direct future investigations and treatment development by clarifying the interactions between DAMs and neurodegenerative diseases.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research