Electric-field-induced magnetic phase transition in (Hf2/3Fe1/3)2COF

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Mingyu Zhao, Yanan Tang
{"title":"Electric-field-induced magnetic phase transition in (Hf2/3Fe1/3)2COF","authors":"Mingyu Zhao, Yanan Tang","doi":"10.1039/d5cp02104a","DOIUrl":null,"url":null,"abstract":"Ferromagnetism breaks time-reversal symmetry, while ferroelectricity breaks spatial-inversion symmetry. Their fundamental origins are different. Thus, there are few materials with intrinsic magnetoelectric coupling. In this work, a 2D Janus in-plane ordered magnetic MXene structure, (Hf₂/₃Fe₁/₃)₂COF, has been predicted to exhibit intrinsic magneto-electric coupling properties by density functional theory (DFT) and Monte Carlo simulations. The ground state of (Hf₂/₃Fe₁/₃)₂COF is ferrimagnetic with a net magnetic moment. The Néel temperature of the system is 12 K according to Monte-Carlo simulation. The direction of the magnetic moment can be flipped by applying an external electric field (0.4 eV/Å). When a biaxial compressive strain is applied, the critical electric field changes to -0.1 eV/Å. In summary, we demonstrate that modifying surface functional groups is an effective method to achieve magneto-electric coupling in 2D in-plane ordered magnetic (i-MXenes). Our calculations not only predict a new 2D material with intrinsic magneto-electric coupling properties, but also provide a new strategy for designing 2D materials with magneto-electric coupling properties.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"12 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp02104a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ferromagnetism breaks time-reversal symmetry, while ferroelectricity breaks spatial-inversion symmetry. Their fundamental origins are different. Thus, there are few materials with intrinsic magnetoelectric coupling. In this work, a 2D Janus in-plane ordered magnetic MXene structure, (Hf₂/₃Fe₁/₃)₂COF, has been predicted to exhibit intrinsic magneto-electric coupling properties by density functional theory (DFT) and Monte Carlo simulations. The ground state of (Hf₂/₃Fe₁/₃)₂COF is ferrimagnetic with a net magnetic moment. The Néel temperature of the system is 12 K according to Monte-Carlo simulation. The direction of the magnetic moment can be flipped by applying an external electric field (0.4 eV/Å). When a biaxial compressive strain is applied, the critical electric field changes to -0.1 eV/Å. In summary, we demonstrate that modifying surface functional groups is an effective method to achieve magneto-electric coupling in 2D in-plane ordered magnetic (i-MXenes). Our calculations not only predict a new 2D material with intrinsic magneto-electric coupling properties, but also provide a new strategy for designing 2D materials with magneto-electric coupling properties.
(Hf2/3Fe1/3)2COF的电场感应磁相变
铁磁性打破了时间反转对称性,而铁电性打破了空间反转对称性。它们的根本起源是不同的。因此,具有本征磁电耦合的材料很少。在这项工作中,通过密度泛函理论(DFT)和蒙特卡罗模拟,预测了二维Janus平面内有序磁性MXene结构(Hf₂/₃Fe₁/₃)₂COF具有本征磁电耦合特性。(Hf₂/₃Fe₁/₃)₂COF的基态是铁磁的,具有一个净磁矩。根据蒙特卡罗模拟,系统的温度为12 K。磁矩的方向可以通过施加一个外电场(0.4 eV/Å)来翻转。当施加双轴压缩应变时,临界电场变化为-0.1 eV/Å。总之,我们证明了修饰表面官能团是实现二维平面内有序磁(i-MXenes)磁电耦合的有效方法。我们的计算不仅预测了一种具有本征磁电耦合特性的新型二维材料,而且为设计具有磁电耦合特性的二维材料提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信