Performing Compound Motor Action Potential Measurement in Zebrafish: A Description of Methodology and a Comparison Between Healthy and ALS-Affected Animals.
{"title":"Performing Compound Motor Action Potential Measurement in Zebrafish: A Description of Methodology and a Comparison Between Healthy and ALS-Affected Animals.","authors":"Seward Rutkove, Gaurav Tiwari, Anjali K Nath","doi":"10.1002/mus.70009","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction/aims: </strong>The compound motor action potential (CMAP) is a very well-established output from standard motor conduction studies in patients. CMAP methods have also been developed for various animal models, including mice, rats, and dogs. Here, we describe a CMAP methodology for adult zebrafish.</p><p><strong>Methods: </strong>Using needle stimulating electrodes placed in proximity to the caudal spinal column and a fixed two-electrode surface array placed near the dorsal fin for recording, we obtained CMAPs in wildtype (WT) and symptomatic amyotrophic lateral sclerosis (ALS) SOD1<sup>G93A</sup> zebrafish, assessing repeatability and the potential for identifying differences between the groups.</p><p><strong>Results: </strong>In WT animals, CMAP amplitude exhibited robust performance with a test-retest intra-class coefficient of 0.97 (95% confidence interval 0.947-0.988; p < 0.0001, n = 30). SOD1<sup>G93A</sup> zebrafish exhibited a 36% lower supramaximal CMAP amplitude as compared to WT (mean ± standard deviation: 7.7 ± 1.7 mV versus 12.2 ± 1.8 mV, respectively, p < 0.0001) and an 11% longer latency (1.30 ± 0.15 ms versus 1.17 ± 0.11 ms, p = 0.002). A classifier, incorporating amplitude and latency together, provided perfect discrimination between the two cohorts.</p><p><strong>Discussion: </strong>CMAP recording is a reliable technique in zebrafish and can successfully differentiate healthy WT fish from ALS-affected animals. Since CMAP is a quantitative metric that is highly sensitive to motor neuron loss or dysfunction, it will allow the zebrafish to be more effectively harnessed for physiological and clinical therapeutic studies in ALS and other neuromuscular diseases for which adult zebrafish models are available.</p>","PeriodicalId":18968,"journal":{"name":"Muscle & Nerve","volume":"72 5","pages":"1168-1177"},"PeriodicalIF":3.1000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muscle & Nerve","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mus.70009","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction/aims: The compound motor action potential (CMAP) is a very well-established output from standard motor conduction studies in patients. CMAP methods have also been developed for various animal models, including mice, rats, and dogs. Here, we describe a CMAP methodology for adult zebrafish.
Methods: Using needle stimulating electrodes placed in proximity to the caudal spinal column and a fixed two-electrode surface array placed near the dorsal fin for recording, we obtained CMAPs in wildtype (WT) and symptomatic amyotrophic lateral sclerosis (ALS) SOD1G93A zebrafish, assessing repeatability and the potential for identifying differences between the groups.
Results: In WT animals, CMAP amplitude exhibited robust performance with a test-retest intra-class coefficient of 0.97 (95% confidence interval 0.947-0.988; p < 0.0001, n = 30). SOD1G93A zebrafish exhibited a 36% lower supramaximal CMAP amplitude as compared to WT (mean ± standard deviation: 7.7 ± 1.7 mV versus 12.2 ± 1.8 mV, respectively, p < 0.0001) and an 11% longer latency (1.30 ± 0.15 ms versus 1.17 ± 0.11 ms, p = 0.002). A classifier, incorporating amplitude and latency together, provided perfect discrimination between the two cohorts.
Discussion: CMAP recording is a reliable technique in zebrafish and can successfully differentiate healthy WT fish from ALS-affected animals. Since CMAP is a quantitative metric that is highly sensitive to motor neuron loss or dysfunction, it will allow the zebrafish to be more effectively harnessed for physiological and clinical therapeutic studies in ALS and other neuromuscular diseases for which adult zebrafish models are available.
期刊介绍:
Muscle & Nerve is an international and interdisciplinary publication of original contributions, in both health and disease, concerning studies of the muscle, the neuromuscular junction, the peripheral motor, sensory and autonomic neurons, and the central nervous system where the behavior of the peripheral nervous system is clarified. Appearing monthly, Muscle & Nerve publishes clinical studies and clinically relevant research reports in the fields of anatomy, biochemistry, cell biology, electrophysiology and electrodiagnosis, epidemiology, genetics, immunology, pathology, pharmacology, physiology, toxicology, and virology. The Journal welcomes articles and reports on basic clinical electrophysiology and electrodiagnosis. We expedite some papers dealing with timely topics to keep up with the fast-moving pace of science, based on the referees'' recommendation.