Tailoring the Film Thickness of Template-Assisted Sol–Gel-Derived Porous WO3 Photoanodes for Highly Efficient Photoelectrochemical Water Oxidation

IF 3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Lukas Max Mayer, Roland Marschall
{"title":"Tailoring the Film Thickness of Template-Assisted Sol–Gel-Derived Porous WO3 Photoanodes for Highly Efficient Photoelectrochemical Water Oxidation","authors":"Lukas Max Mayer,&nbsp;Roland Marschall","doi":"10.1002/cptc.202500191","DOIUrl":null,"url":null,"abstract":"<p>Photoelectrochemical hydrogen production is a promising and cost-effective strategy to provide clean and sustainable fuel. Due to its excellent electrical and optical properties, tungsten trioxide (WO<sub>3</sub>) is one of the most studied electrode materials in this field, and it is well known that the incorporation of pores into the semiconductor can improve its photoelectrochemical performance. Using a facile and scalable template-assisted sol–gel technique, porous WO<sub>3</sub> thin films were tailored by simply varying the number of dip coating cycles. By crystallizing these films at 400 °C, a <span></span><math></math>-orthorhombic/<span></span><math></math>-monoclinic crystal structure and an average surface area of 32 m<sup>2</sup> g<sup>−1</sup> were obtained. By optimizing the layer thickness of these photoanodes on fluorine-doped tin oxide, photocurrents of up to 3.3 mA cm<sup>−2</sup> at 1.23 <i>V</i><sub>RHE</sub> (in 0.1M H<sub>2</sub>SO<sub>4</sub>, pH = 0.71) were achieved without the use of any co-catalysts or sacrificial agents. Our photoelectrodes also showed highly reproducible photocurrents, and their high stability was proven in cycling tests, long-term measurement and post-photoelectrochemical characterization. Our work represents a very simple preparation optimization to achieve high-performing WO<sub>3</sub> photoanodes for photoelectrochemical applications.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202500191","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cptc.202500191","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photoelectrochemical hydrogen production is a promising and cost-effective strategy to provide clean and sustainable fuel. Due to its excellent electrical and optical properties, tungsten trioxide (WO3) is one of the most studied electrode materials in this field, and it is well known that the incorporation of pores into the semiconductor can improve its photoelectrochemical performance. Using a facile and scalable template-assisted sol–gel technique, porous WO3 thin films were tailored by simply varying the number of dip coating cycles. By crystallizing these films at 400 °C, a -orthorhombic/-monoclinic crystal structure and an average surface area of 32 m2 g−1 were obtained. By optimizing the layer thickness of these photoanodes on fluorine-doped tin oxide, photocurrents of up to 3.3 mA cm−2 at 1.23 VRHE (in 0.1M H2SO4, pH = 0.71) were achieved without the use of any co-catalysts or sacrificial agents. Our photoelectrodes also showed highly reproducible photocurrents, and their high stability was proven in cycling tests, long-term measurement and post-photoelectrochemical characterization. Our work represents a very simple preparation optimization to achieve high-performing WO3 photoanodes for photoelectrochemical applications.

Abstract Image

调整模板辅助溶胶-凝胶衍生多孔WO3光阳极的膜厚度用于高效光电化学水氧化
光电化学制氢是一种极具前景和成本效益的清洁可持续燃料。由于其优异的电学和光学性能,三氧化钨(WO3)是该领域研究最多的电极材料之一,众所周知,在半导体中掺入孔可以提高其光电电化学性能。使用一种简单且可扩展的模板辅助溶胶-凝胶技术,通过简单地改变浸涂循环次数来定制多孔WO3薄膜。通过在400℃下结晶,获得了-正交/-单斜晶体结构,平均表面积为32 m2 g−1。通过优化这些光阳极在氟掺杂氧化锡上的层厚度,在1.23 VRHE (0.1M H2SO4, pH = 0.71)条件下,在不使用任何助催化剂或牺牲剂的情况下,获得了高达3.3 mA cm - 2的光电流。我们的光电极还显示出高度可重现的光电流,并且在循环测试、长期测量和后光电化学表征中证明了它们的高稳定性。我们的工作代表了一种非常简单的制备优化,以实现用于光电化学应用的高性能WO3光阳极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemPhotoChem
ChemPhotoChem Chemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊介绍: Light plays a crucial role in natural processes and leads to exciting phenomena in molecules and materials. ChemPhotoChem welcomes exceptional international research in the entire scope of pure and applied photochemistry, photobiology, and photophysics. Our thorough editorial practices aid us in publishing authoritative research fast. We support the photochemistry community to be a leading light in science. We understand the huge pressures the scientific community is facing every day and we want to support you. Chemistry Europe is an association of 16 chemical societies from 15 European countries. Run by chemists, for chemists—we evaluate, publish, disseminate, and amplify the scientific excellence of chemistry researchers from around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信