Ultrahigh‐Performance Broadband Photodetection in NiTeSe–WS2 Heterostructures: A Synergistic Integration of Dirac Semimetals and 2D TMDs

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Aditya Kushwaha, Shalini Vardhan, Ritu Raj Singh, Neeraj Goel
{"title":"Ultrahigh‐Performance Broadband Photodetection in NiTeSe–WS2 Heterostructures: A Synergistic Integration of Dirac Semimetals and 2D TMDs","authors":"Aditya Kushwaha, Shalini Vardhan, Ritu Raj Singh, Neeraj Goel","doi":"10.1002/adts.202500889","DOIUrl":null,"url":null,"abstract":"2D transition metal dichalcogenides (2D TMDs) like WS<jats:sub>2</jats:sub> have shown immense potential for optoelectronic applications but face inherent limitations in spectral range, carrier mobility, and recombination losses. To overcome these challenges, a novel heterostructure combining WS<jats:sub>2</jats:sub> with the semimetal NiTeSe is proposed, leveraging its ultrahigh carrier mobility and near‐zero bandgap for enhanced photodetection. Through first‐principles density functional theory (DFT) calculations and COMSOL Multiphysics simulations, the electronic and optical properties of the NiTeSe–WS<jats:sub>2</jats:sub> heterostructure are systematically investigated. The hybrid system has a Schottky barrier at the interface and a smaller bandgap (0.689 eV in NiTeSe–WS<jats:sub>2</jats:sub> compared to 1.809 eV in pure WS<jats:sub>2</jats:sub>). This helps separate charges more efficiently and absorb a wider range of light. Optical analyses reveal exceptional performance, including a 48% higher absorption coefficient (2.21 × 10⁵ cm<jats:sup>−1</jats:sup>) and 53% enhanced optical conductivity (3.91 Ω<jats:sup>−1</jats:sup> cm<jats:sup>−1</jats:sup>) compared to pristine WS<jats:sub>2</jats:sub>. Device simulations reveal outstanding photoresponse performance, with a peak responsivity of 4.3 × 10<jats:sup>4</jats:sup> A W<jats:sup>−1</jats:sup> and an external quantum efficiency of 1.06 × 10<jats:sup>5</jats:sup>%, representing a significant enhancement compared to pristine WS<jats:sub>2</jats:sub>. These results establish the NiTeSe–WS<jats:sub>2</jats:sub> heterostructure as a transformative platform for next‐generation photodetectors, offering unprecedented sensitivity, spectral versatility, and speed for applications in communication, imaging, and sensing technologies.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"199 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500889","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

2D transition metal dichalcogenides (2D TMDs) like WS2 have shown immense potential for optoelectronic applications but face inherent limitations in spectral range, carrier mobility, and recombination losses. To overcome these challenges, a novel heterostructure combining WS2 with the semimetal NiTeSe is proposed, leveraging its ultrahigh carrier mobility and near‐zero bandgap for enhanced photodetection. Through first‐principles density functional theory (DFT) calculations and COMSOL Multiphysics simulations, the electronic and optical properties of the NiTeSe–WS2 heterostructure are systematically investigated. The hybrid system has a Schottky barrier at the interface and a smaller bandgap (0.689 eV in NiTeSe–WS2 compared to 1.809 eV in pure WS2). This helps separate charges more efficiently and absorb a wider range of light. Optical analyses reveal exceptional performance, including a 48% higher absorption coefficient (2.21 × 10⁵ cm−1) and 53% enhanced optical conductivity (3.91 Ω−1 cm−1) compared to pristine WS2. Device simulations reveal outstanding photoresponse performance, with a peak responsivity of 4.3 × 104 A W−1 and an external quantum efficiency of 1.06 × 105%, representing a significant enhancement compared to pristine WS2. These results establish the NiTeSe–WS2 heterostructure as a transformative platform for next‐generation photodetectors, offering unprecedented sensitivity, spectral versatility, and speed for applications in communication, imaging, and sensing technologies.
NiTeSe-WS2异质结构的超高性能宽带光探测:Dirac半金属和二维tmd的协同集成
像WS2这样的二维过渡金属二硫族化合物(2D TMDs)在光电应用方面显示出巨大的潜力,但在光谱范围、载流子迁移率和复合损失方面面临固有的限制。为了克服这些挑战,研究人员提出了一种结合WS2和半金属NiTeSe的新型异质结构,利用其超高载流子迁移率和近零带隙来增强光探测。通过第一性原理密度泛函理论(DFT)计算和COMSOL多物理场模拟,系统地研究了NiTeSe-WS2异质结构的电子和光学性质。该混合系统在界面处具有肖特基势垒,带隙较小(NiTeSe-WS2为0.689 eV,而纯WS2为1.809 eV)。这有助于更有效地分离电荷,并吸收更大范围的光。光学分析显示了优异的性能,与原始WS2相比,吸收系数提高了48% (2.21 × 10 5 cm−1),光学电导率提高了53% (3.91 Ω−1 cm−1)。器件模拟显示了出色的光响应性能,峰值响应率为4.3 × 104 a W−1,外部量子效率为1.06 × 105%,与原始WS2相比有了显着提高。这些结果奠定了NiTeSe-WS2异质结构作为下一代光电探测器的变革性平台,为通信、成像和传感技术的应用提供了前所未有的灵敏度、光谱通用性和速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信