Xueyang Pan, Yue Wang, Ning Liu, Xi Luo, V Reid Sutton, William J Craigen, Qin Sun
{"title":"Detecting mitochondrial electron transport chain enzyme defects in low-heteroplasmy single large-scale mtDNA deletion syndromes (SLSMDSs).","authors":"Xueyang Pan, Yue Wang, Ning Liu, Xi Luo, V Reid Sutton, William J Craigen, Qin Sun","doi":"10.1016/j.ymgme.2025.109260","DOIUrl":null,"url":null,"abstract":"<p><p>Large deletions in multi-copy mitochondrial DNA (mtDNA) are associated with chronic progressive external ophthalmoplegia (CPEO), Kearns-Sayre syndrome (KSS), and Pearson syndrome (PS), collectively referred to as single large-scale mtDNA deletion syndromes (SLSMDSs). These deletions are typically sporadic and heteroplasmic, yet the relationship between heteroplasmy levels and disease severity remains uncertain, particularly for low level deletions, making pathogenicity assessment challenging. To evaluate the functional impact of mtDNA deletions in muscle, we retrospectively analyzed 1104 consecutive clinical cases with both mtDNA sequencing and mitochondrial electron transport chain (ETC) enzyme assays performed on the same muscle specimen. Fifteen cases (1.4 %) carried a single large mtDNA deletion and exhibited clinical features consistent with the CPEO/KSS spectrum. Of these, seven showed ETC deficiencies despite low deletion heteroplasmy levels (<10 % in all cases). Four had enzyme deficiencies defined to a single complex, while three had deficiencies in multiple complexes. Complex IV was most frequently impaired, whereas nuclear-encoded complex II activity remained normal in all samples. Notably, the pattern of ETC impairment did not fully correlate with the specific mitochondrial genes disrupted by the deletions. These findings demonstrate that mitochondrial dysfunction can occur at mtDNA deletion heteroplasmy levels far below conventional pathogenic thresholds. This highlights the diagnostic relevance of low-level mtDNA deletions and supports the integration of molecular and functional testing in accurate SLSMDS diagnosis.</p>","PeriodicalId":18937,"journal":{"name":"Molecular genetics and metabolism","volume":"146 3","pages":"109260"},"PeriodicalIF":3.5000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular genetics and metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ymgme.2025.109260","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Large deletions in multi-copy mitochondrial DNA (mtDNA) are associated with chronic progressive external ophthalmoplegia (CPEO), Kearns-Sayre syndrome (KSS), and Pearson syndrome (PS), collectively referred to as single large-scale mtDNA deletion syndromes (SLSMDSs). These deletions are typically sporadic and heteroplasmic, yet the relationship between heteroplasmy levels and disease severity remains uncertain, particularly for low level deletions, making pathogenicity assessment challenging. To evaluate the functional impact of mtDNA deletions in muscle, we retrospectively analyzed 1104 consecutive clinical cases with both mtDNA sequencing and mitochondrial electron transport chain (ETC) enzyme assays performed on the same muscle specimen. Fifteen cases (1.4 %) carried a single large mtDNA deletion and exhibited clinical features consistent with the CPEO/KSS spectrum. Of these, seven showed ETC deficiencies despite low deletion heteroplasmy levels (<10 % in all cases). Four had enzyme deficiencies defined to a single complex, while three had deficiencies in multiple complexes. Complex IV was most frequently impaired, whereas nuclear-encoded complex II activity remained normal in all samples. Notably, the pattern of ETC impairment did not fully correlate with the specific mitochondrial genes disrupted by the deletions. These findings demonstrate that mitochondrial dysfunction can occur at mtDNA deletion heteroplasmy levels far below conventional pathogenic thresholds. This highlights the diagnostic relevance of low-level mtDNA deletions and supports the integration of molecular and functional testing in accurate SLSMDS diagnosis.
期刊介绍:
Molecular Genetics and Metabolism contributes to the understanding of the metabolic and molecular basis of disease. This peer reviewed journal publishes articles describing investigations that use the tools of biochemical genetics and molecular genetics for studies of normal and disease states in humans and animal models.