Identification of an E2Fs-based gene signature for predicting prognosis and therapeutic response in colorectal cancer.

IF 2.9 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Feifan Zhang, Zhiwei Sun, Zhenyu Zhang, Kexin Jiang, Bowen Wei, Xiaoqi Yu, Yunfei Zuo, Shuangyi Ren
{"title":"Identification of an E2Fs-based gene signature for predicting prognosis and therapeutic response in colorectal cancer.","authors":"Feifan Zhang, Zhiwei Sun, Zhenyu Zhang, Kexin Jiang, Bowen Wei, Xiaoqi Yu, Yunfei Zuo, Shuangyi Ren","doi":"10.1007/s12672-025-02615-y","DOIUrl":null,"url":null,"abstract":"<p><p>E2F family genes are common transcription factors, abnormal in several malignant tumors. However, their complex involvement in colorectal cancer, particularly in prognosis, immune infiltration, and mutational landscape, remains unclear. We conducted a study using gene expression data from the TCGA and GEO datasets to examine the abnormal expression of E2Fs in colorectal cancer. And we performed consensus clustering and differential gene expression analyses to identify E2Fs-related genes. Then, we used Lasso regression and multivariate Cox regression to create a prognostic risk model for colorectal cancer. We analyzed the differences between the E2Fs-based gene risk and various clinical characteristics, gene mutations, immune cell infiltration, immunotherapy responses, and drug sensitivity using clinicopathological data, single-cell RNA sequences, multiple immune algorithms. Finally, we have developed a prognostic risk model that includes FMO5, NDUFA11, LIPG, FIGNL1, MOGAT2, and GZMB. We observed significant differences in clinical characteristics, immune cell infiltration, gene mutation landscapes, immunotherapy responses, and drug sensitivity between the high-risk and low-risk groups. The novel E2Fs-based gene risk model shows significant potential for contributing to the evaluation of prognosis and predicting immunotherapeutic outcomes for colorectal cancer patients.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"1893"},"PeriodicalIF":2.9000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12528531/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-02615-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

E2F family genes are common transcription factors, abnormal in several malignant tumors. However, their complex involvement in colorectal cancer, particularly in prognosis, immune infiltration, and mutational landscape, remains unclear. We conducted a study using gene expression data from the TCGA and GEO datasets to examine the abnormal expression of E2Fs in colorectal cancer. And we performed consensus clustering and differential gene expression analyses to identify E2Fs-related genes. Then, we used Lasso regression and multivariate Cox regression to create a prognostic risk model for colorectal cancer. We analyzed the differences between the E2Fs-based gene risk and various clinical characteristics, gene mutations, immune cell infiltration, immunotherapy responses, and drug sensitivity using clinicopathological data, single-cell RNA sequences, multiple immune algorithms. Finally, we have developed a prognostic risk model that includes FMO5, NDUFA11, LIPG, FIGNL1, MOGAT2, and GZMB. We observed significant differences in clinical characteristics, immune cell infiltration, gene mutation landscapes, immunotherapy responses, and drug sensitivity between the high-risk and low-risk groups. The novel E2Fs-based gene risk model shows significant potential for contributing to the evaluation of prognosis and predicting immunotherapeutic outcomes for colorectal cancer patients.

基于e2fs的结直肠癌预后和治疗反应预测基因标记的鉴定
E2F家族基因是常见的转录因子,在多种恶性肿瘤中均有异常。然而,它们在结直肠癌中的复杂参与,特别是在预后、免疫浸润和突变景观方面,仍不清楚。我们利用TCGA和GEO数据集的基因表达数据来研究E2Fs在结直肠癌中的异常表达。我们进行了共识聚类和差异基因表达分析,以确定e2fs相关基因。然后,我们使用Lasso回归和多变量Cox回归建立结直肠癌的预后风险模型。我们利用临床病理数据、单细胞RNA序列、多种免疫算法分析了基于e2fs的基因风险与各种临床特征、基因突变、免疫细胞浸润、免疫治疗反应和药物敏感性之间的差异。最后,我们建立了一个包括FMO5、NDUFA11、LIPG、FIGNL1、MOGAT2和GZMB的预后风险模型。我们观察到高危组和低危组在临床特征、免疫细胞浸润、基因突变景观、免疫治疗反应和药物敏感性方面存在显著差异。新的基于e2fs的基因风险模型在评估结直肠癌患者的预后和预测免疫治疗结果方面显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信