An AI-based microsimulation for predicting health outcomes among people experiencing homelessness.

IF 4.8 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Antonio Blasco-Calafat, Vicent Blanes-Selva, Ascensión Doñate-Martínez, Tobias Fragner, Tamara Alhambra-Borrás, Julia Gawronska, Maria Moudatsou, Ioanna Tabaki, Katerina Belogianni, Pania Karnaki, Miguel Rico Varadé, Rosa Gómez Trenado, Jaime Barrio-Cortes, Lee Smith, Alejandro Gil-Salmeron, Igor Grabovac, Juan M García-Gómez
{"title":"An AI-based microsimulation for predicting health outcomes among people experiencing homelessness.","authors":"Antonio Blasco-Calafat, Vicent Blanes-Selva, Ascensión Doñate-Martínez, Tobias Fragner, Tamara Alhambra-Borrás, Julia Gawronska, Maria Moudatsou, Ioanna Tabaki, Katerina Belogianni, Pania Karnaki, Miguel Rico Varadé, Rosa Gómez Trenado, Jaime Barrio-Cortes, Lee Smith, Alejandro Gil-Salmeron, Igor Grabovac, Juan M García-Gómez","doi":"10.1016/j.cmpb.2025.109112","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>People experiencing homelessness (PEH) face higher cancer risk due to social exclusion, housing and limited access to healthcare. This study proposes a microsimulation model using machine learning (ML) to predict the effect of quality of life, healthcare utilisation and empowerment at the end of the intervention under the Health Navigator Model, enabling cost-effective resource allocation and identifying high-risk subgroups.</p><p><strong>Materials & methods: </strong>We used data from 652 PEH recruited in four European countries (June 2022 - November 2023); 255 completed an 18-month Health Navigator Model programme. Standardised questionnaires were administered at baseline, four weeks and post-intervention. A modular ML microsimulation was built that (1) creates a constraint-based synthetic cohort, (2) estimates outcome changes by matching each simulated case to real program completers, and (3) sums those differences to gauge the intervention's impact. Multiple ML techniques were tested to keep the synthetic sample true to the original and to improve effect-size predictions.</p><p><strong>Results: </strong>CTGAN generated the most realistic synthetic baseline (propensity score = 0.152; 95 % CI 0.148-0.162), markedly outperforming univariant, multivariant and SMOTE approaches (> 0.21). Regression models reproduced most numerical outcomes with good fidelity (e.g., EQ-5D-5L MAE = 0.10 on a 0-1 scale; Health-Rating MAE = 10 on a 0-100 scale), while categorical outcomes were predicted within roughly one category. Binary classifiers yielded F1-scores of 0.58 for smoking status and 0.64 for programme adherence. An online demonstrator (https://epione.upv.es) visualises the process.</p><p><strong>Conclusion: </strong>The proposed ML-based microsimulation generates realistic PEH profiles and projects intervention outcomes, providing a flexible, evidence-driven tool to optimise cancer-prevention strategies for PEH supporting evidence-based decision-making and optimise resource allocation, enhancing intervention outcomes by predicting the intervention before implementation.</p>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"273 ","pages":"109112"},"PeriodicalIF":4.8000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cmpb.2025.109112","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: People experiencing homelessness (PEH) face higher cancer risk due to social exclusion, housing and limited access to healthcare. This study proposes a microsimulation model using machine learning (ML) to predict the effect of quality of life, healthcare utilisation and empowerment at the end of the intervention under the Health Navigator Model, enabling cost-effective resource allocation and identifying high-risk subgroups.

Materials & methods: We used data from 652 PEH recruited in four European countries (June 2022 - November 2023); 255 completed an 18-month Health Navigator Model programme. Standardised questionnaires were administered at baseline, four weeks and post-intervention. A modular ML microsimulation was built that (1) creates a constraint-based synthetic cohort, (2) estimates outcome changes by matching each simulated case to real program completers, and (3) sums those differences to gauge the intervention's impact. Multiple ML techniques were tested to keep the synthetic sample true to the original and to improve effect-size predictions.

Results: CTGAN generated the most realistic synthetic baseline (propensity score = 0.152; 95 % CI 0.148-0.162), markedly outperforming univariant, multivariant and SMOTE approaches (> 0.21). Regression models reproduced most numerical outcomes with good fidelity (e.g., EQ-5D-5L MAE = 0.10 on a 0-1 scale; Health-Rating MAE = 10 on a 0-100 scale), while categorical outcomes were predicted within roughly one category. Binary classifiers yielded F1-scores of 0.58 for smoking status and 0.64 for programme adherence. An online demonstrator (https://epione.upv.es) visualises the process.

Conclusion: The proposed ML-based microsimulation generates realistic PEH profiles and projects intervention outcomes, providing a flexible, evidence-driven tool to optimise cancer-prevention strategies for PEH supporting evidence-based decision-making and optimise resource allocation, enhancing intervention outcomes by predicting the intervention before implementation.

一个基于人工智能的微观模拟,用于预测无家可归者的健康结果。
背景和目的:由于社会排斥、住房和获得医疗保健的机会有限,无家可归者面临更高的癌症风险。本研究提出了一个使用机器学习(ML)的微观模拟模型,以预测健康导航模型下干预结束时生活质量、医疗保健利用和赋权的影响,从而实现具有成本效益的资源分配和识别高风险亚组。材料和方法:我们使用了来自四个欧洲国家(2022年6月至2023年11月)的652名PEH的数据;255人完成了为期18个月的健康导航员示范方案。在基线、四周和干预后进行标准化问卷调查。构建了一个模块化的ML微模拟,它(1)创建了一个基于约束的合成队列,(2)通过将每个模拟案例与真实的程序完成者进行匹配来估计结果变化,(3)将这些差异相加以衡量干预的影响。测试了多种ML技术,以保持合成样品忠于原始并提高效应大小预测。结果:CTGAN生成了最真实的合成基线(倾向得分= 0.152;95% CI 0.148-0.162),明显优于单变量、多变量和SMOTE方法(> 0.21)。回归模型以良好的保真度再现了大多数数值结果(例如,EQ-5D-5L MAE在0-1量表上= 0.10;Health-Rating MAE在0-100量表上= 10),而分类结果在大约一个类别内进行预测。二分类器得出吸烟状况的f1得分为0.58,计划依从性的f1得分为0.64。一个在线演示者(https://epione.upv.es)将这一过程可视化。结论:本文提出的基于ml的微观模拟生成了真实的PEH概况和项目干预结果,为优化PEH的癌症预防策略提供了一个灵活的、循证驱动的工具,支持循证决策和优化资源配置,通过在干预实施前预测来提高干预效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信