Toward a Generalizable Prediction Model of Molten Salt Mixture Density with Chemistry-Informed Transfer Learning.

IF 2.2 3区 化学 Q3 CHEMISTRY, PHYSICAL
Julian Barra, Shayan Shahbazi, Anthony Birri, Rajni Chahal, Ibrahim Isah, Muhammad Nouman Anwar, Tyler Starkus, Prasanna Balaprakash, Stephen Lam
{"title":"Toward a Generalizable Prediction Model of Molten Salt Mixture Density with Chemistry-Informed Transfer Learning.","authors":"Julian Barra, Shayan Shahbazi, Anthony Birri, Rajni Chahal, Ibrahim Isah, Muhammad Nouman Anwar, Tyler Starkus, Prasanna Balaprakash, Stephen Lam","doi":"10.1002/cphc.202500273","DOIUrl":null,"url":null,"abstract":"<p><p>Optimally designing applications of molten salts requires knowledge of their thermophysical properties over a wide range of temperatures and compositions. There exist significant gaps in existing databases and this data can be challenging to experimentally measure due to high temperatures, salt corrosivity, and salt hygroscopicity. Existing databases have been used to create Redlich-Kister (RK) models for mixture density showing improved accuracy with respect to ideal mixing assumptions, but these models require subcomponent data measurements for each new system, therefore lacking generality. In order to address generalizability and data sparsity, a transfer learning procedure is proposed to train deep neural networks (DNNs) using a combination of semi-empirical relationships (RK), data from the thermophysical arm of the molten salt thermal properties database and universal ab initio properties of component mixtures taken from the joint automated repository for various integrated simulations (JARVIS) classical force-field inspired descriptors database to predict density in molten salts. Herein, it is shown that DNNs predict molten salt density with an r<sup>2</sup> over 0.99 and a mean absolute percentage error under 1%, outperforming alternative methods.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202500273"},"PeriodicalIF":2.2000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202500273","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Optimally designing applications of molten salts requires knowledge of their thermophysical properties over a wide range of temperatures and compositions. There exist significant gaps in existing databases and this data can be challenging to experimentally measure due to high temperatures, salt corrosivity, and salt hygroscopicity. Existing databases have been used to create Redlich-Kister (RK) models for mixture density showing improved accuracy with respect to ideal mixing assumptions, but these models require subcomponent data measurements for each new system, therefore lacking generality. In order to address generalizability and data sparsity, a transfer learning procedure is proposed to train deep neural networks (DNNs) using a combination of semi-empirical relationships (RK), data from the thermophysical arm of the molten salt thermal properties database and universal ab initio properties of component mixtures taken from the joint automated repository for various integrated simulations (JARVIS) classical force-field inspired descriptors database to predict density in molten salts. Herein, it is shown that DNNs predict molten salt density with an r2 over 0.99 and a mean absolute percentage error under 1%, outperforming alternative methods.

基于化学信息迁移学习的熔盐混合物密度可推广预测模型。
优化设计熔盐的应用需要了解其在广泛的温度和成分范围内的热物理性质。由于高温、盐的腐蚀性和盐的吸湿性,现有的数据库存在很大的空白,这些数据对实验测量具有挑战性。现有的数据库已用于创建混合物密度的Redlich-Kister (RK)模型,该模型在理想混合假设方面显示出更高的准确性,但这些模型需要对每个新系统进行子成分数据测量,因此缺乏通用性。为了解决泛化性和数据稀疏性问题,提出了一种迁移学习方法来训练深度神经网络(dnn),该方法使用半经验关系(RK)、数据来自熔盐热物性数据库的热物理臂和来自各种综合模拟联合自动化存储库(JARVIS)经典力场启发描述符数据库的组分混合物的通用从头算性质,以预测熔盐的密度。本文表明,dnn预测熔盐密度的r2大于0.99,平均绝对百分比误差小于1%,优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信