Marius F. Maurstad, Siv Nam Khang Hoff, José Cerca, Mark Ravinet, Ian Bradbury, Kjetill S. Jakobsen, Kim Præbel, Sissel Jentoft
{"title":"Reference genome bias in light of species-specific chromosomal reorganization and translocations","authors":"Marius F. Maurstad, Siv Nam Khang Hoff, José Cerca, Mark Ravinet, Ian Bradbury, Kjetill S. Jakobsen, Kim Præbel, Sissel Jentoft","doi":"10.1186/s13059-025-03761-w","DOIUrl":null,"url":null,"abstract":"Whole-genome sequencing efforts, have during the past decade, unveiled the central role of genomic rearrangements—such as chromosomal inversions—in evolutionary processes, including local adaptation in a wide range of taxa. However, employment of reference genomes from distantly or even closely related species for mapping and the subsequent variant calling can lead to errors and/or biases in the datasets generated for downstream analyses. Here, we capitalize on the recently generated chromosome-anchored genome assemblies for Arctic cod (Arctogadus glacialis), polar cod (Boreogadus saida), and Atlantic cod (Gadus morhua) to evaluate the extent and consequences of reference bias on population sequencing datasets (approx. 15–20 × coverage) for both Arctic cod and polar cod. Our findings demonstrate that the choice of reference genome impacts the mapping statistics, including mapping depth and mapping quality, as well as core population genetic estimates, such as heterozygosity levels, nucleotide diversity (π), and cross-species genetic divergence (DXY). Furthermore, using a more distantly related reference genome can lead to inaccurate detection and characterization of chromosomal inversions, i.e., in terms of size (length) and location (position), due to inter-chromosomal reorganizations between species. Additionally, we observe that some of the verified species-specific inversions are split across multiple genomic regions when mapped against a heterospecific reference. Inaccurate identification of chromosomal rearrangements as well as biased population genetic measures could potentially lead to erroneous interpretation of species-specific genomic diversity, impede the resolution of local adaptation, and thus, impact predictions of their genomic potential to respond to climatic and other environmental perturbations.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"1 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03761-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Whole-genome sequencing efforts, have during the past decade, unveiled the central role of genomic rearrangements—such as chromosomal inversions—in evolutionary processes, including local adaptation in a wide range of taxa. However, employment of reference genomes from distantly or even closely related species for mapping and the subsequent variant calling can lead to errors and/or biases in the datasets generated for downstream analyses. Here, we capitalize on the recently generated chromosome-anchored genome assemblies for Arctic cod (Arctogadus glacialis), polar cod (Boreogadus saida), and Atlantic cod (Gadus morhua) to evaluate the extent and consequences of reference bias on population sequencing datasets (approx. 15–20 × coverage) for both Arctic cod and polar cod. Our findings demonstrate that the choice of reference genome impacts the mapping statistics, including mapping depth and mapping quality, as well as core population genetic estimates, such as heterozygosity levels, nucleotide diversity (π), and cross-species genetic divergence (DXY). Furthermore, using a more distantly related reference genome can lead to inaccurate detection and characterization of chromosomal inversions, i.e., in terms of size (length) and location (position), due to inter-chromosomal reorganizations between species. Additionally, we observe that some of the verified species-specific inversions are split across multiple genomic regions when mapped against a heterospecific reference. Inaccurate identification of chromosomal rearrangements as well as biased population genetic measures could potentially lead to erroneous interpretation of species-specific genomic diversity, impede the resolution of local adaptation, and thus, impact predictions of their genomic potential to respond to climatic and other environmental perturbations.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.